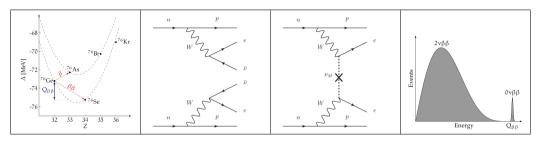



# Latest results from the CUORE experiment

Giovanni Benato for the CUORE Collaboration UC Berkeley

TeVPA, Berlin, 27-31 August 2018

## $0\nu\beta\beta$ decay: what and why?


## Open questions

- What is the origin of our matter-dominated Universe?
- Is (B-L) conserved?
- · What's the origin of neutrino masses?
- Are neutrinos Dirac or Majorana particles?

## If we measure $0\nu\beta\beta$ decay:

- We would have an example of a matter-creating process
- (B-L) and L would not be conserved
- · Neutrinos would have a Majorana mass component

## $0\nu\beta\beta$ decay: what and why?



## $\beta\beta$ decay signature

- Continuum for  $2\nu\beta\beta$  decay, peak at  $Q_{\beta\beta}$  for  $0\nu\beta\beta$  decay
- Additional signatures from signal topology, pulse shape discrimination,  $\dots$

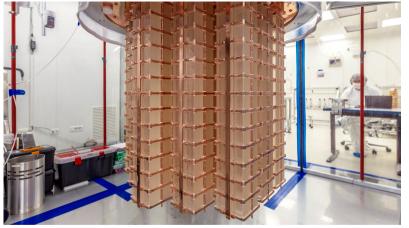
## $0\nu\beta\beta$ decay rate

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot \frac{|f|^2}{m_e^2}$$

• 
$$T_{1/2}^{0\nu} = 0\nu\beta\beta$$
 decay half life

• 
$$G_{0\nu}$$
 = phase space (known)

• 
$$M_{0\nu}$$
 = nuclear matrix element (NME)


• f = new physics

# CUORE: the Cryogenic Underground Experiment for Rare Events























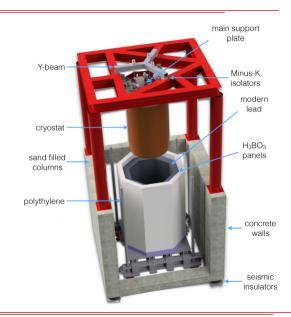


Technology








## The CUORE experiment

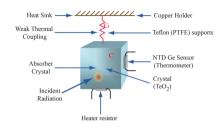
#### Main features

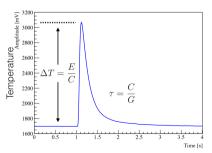
- Goal: search for  $0
  u\beta\beta$  decay of  $^{130}$ Te
- Energy resolution: goal of 5 keV at  $Q_{\beta\beta}$
- Low background: goal of  $10^{-2}$  cts/(keV·kg·yr) at  $Q_{\beta\beta}$

## Mitigation of external backgrounds

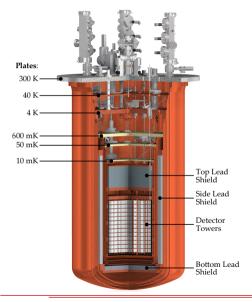
- Located at the Gran Sasso National Laboratory (3600 m.w.e. overburden):  $3\cdot 10^{-8}~\mu/\text{cm}^2/\text{s}$
- Polyethylene and H<sub>3</sub>BO<sub>3</sub> neutron shielding
- 70 tons of external lead shielding
- $\cdot$  6.5 tons of Roman Pb inside the cryostat
- · Copper cryostat absorbs Pb X-rays




## Detector principles


## Why cryogenic calorimeters?

- Detect temperature variation due to phonon contribution of released energy
  - ightarrow High energy resolution: currently  $\sim 0.3\%$  FWHM at  $Q_{etaeta}$
- · Allow to change crystal and isotope

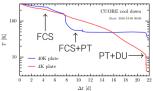

## How do cryogenic calorimeters work?

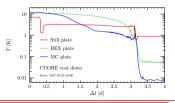
- Heat capacity:  $C = C(T) \propto T^3 \rightarrow \text{Need to work at} \sim 10 \, \text{mK}$
- Temperature response (pulse height):  $\Delta T = \Delta E/C$
- ${}^{ullet}$  Relaxation through weak link with thermal conductivity G
- Pulse decay constant: au=C/G





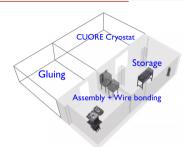
## How do we keep the crystals cold?





## Requirements

- Cool down in  $\lesssim 1$  month
- Stay stable at  $\sim 10 \ \mathrm{mK}$
- Run for 5 yr

#### Solutions


- Cryogen free cryostat  $\rightarrow$  Lower down time
- Fast cooling with He vapor down to  $\sim 40~\mathrm{K}$
- 5 Pulse Tubes (PT) down to  $\sim 4$  K
- Dilution Unit (DU) down to  $\sim 10$  mK





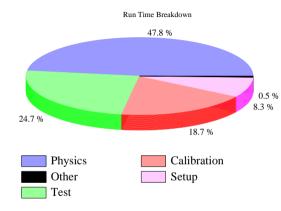
## How to avoid recontamination?

- Screening of all parts
- · Underground storage to avoid cosmic activation
- Tower assembly in underground class 1000 clean room
- Towers stored in N<sub>2</sub> atmosphere to minimize Rn contamination
- · Dedicated clean room with Rn-free air for tower installation
  - $\rightarrow$  Rn level kept  $\lesssim 50$  mBq/m<sup>3</sup> for the entire duration of the installation





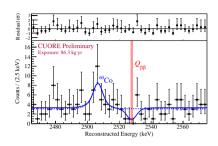


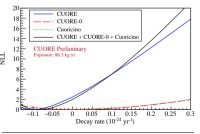

## 2017 data collection

#### Data sets

- · Dataset 1: May-Jun. 2017
- Dataset 2: Aug.-Sep. 2017
- Calibration at beginning and end of each data set

#### Performance


- 984/988 operational channels
- $\cdot \sim 3\%$  of channels without heater
- More stable wrt Cuoricino/CUORE-0
- Thr.: from 20 to few hundreds keV
   → Optimal trigger available soon
- Per-channel trigger rate:
   6 mHz physics / 50 mHz calibration




#### Collected statistics

- TeO₂ exposure: 86.3 kg·yr
- 130 Te exposure: 24.0 kg·yr

# 2017 $0\nu\beta\beta$ decay analysis<sup>1</sup>





#### ROI fit

- Fit region: [2465, 2575] keV
- Flat bkg +  $0\nu\beta\beta$  peak +  $^{60}$ Co peak
- Channel-dependent line shape
- Simultaneous unbinned max- $\mathcal{L}$  fit (negative rates allowed)
- Cross-check with fully Bayesian fit

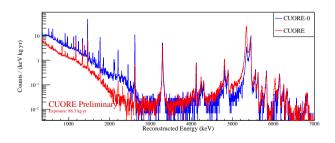
## Limit on $\mathsf{T}_{1/2}^{0\nu}$ and $|m_{\beta\beta}|$

- Integrate profile likelihood in the physical region  $(\Gamma_{0\nu}>0)$
- For bkg-dominated case, equivalent to Bayesian construction with flat prior on all rates
- CUORE only:  $T_{1/2}^{0\nu} > 1.3 \cdot 10^{25} \text{ yr (}90\% \text{ C.l.)}$
- With Cuoricino and CUORE-0:  $T_{1/2}^{0\nu} > 1.5 \cdot 10^{25}$  yr (90% C.I.)
- Median sensitivity:  $\hat{T}_{1/2}^{0\nu} = 7.4 \cdot 10^{24} \text{ yr}$
- Limit on effective mass:  $m_{\beta\beta} < (140 400)$  meV (90% C.I.)

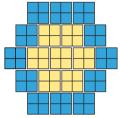
TeVPA 2018

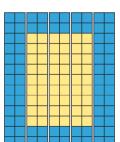
<sup>&</sup>lt;sup>1</sup>CUORE Collaboration, Phys. Rev. Lett. 120 (2018) 132501

# Understanding the CUORE background


### Some history

- $\sim 65\%$  of CUORICINO bkg from surface  $\alpha$  contaminants, remaining was  $\gamma$ 's from  $^{232}$ Th in cryostat
- CUORE-0: test CUORE tower construction on CUORICINO cryostat
- $\alpha$  background in CUORE-0 reduced by factor 10 wrt CUORICINO


## **CUORE** background

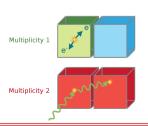

- $\gamma$  bkg strongly reduced
- Most  $\alpha$  bkg consistent with CUORE-0
- Bkg generally consistent with expectations
- <sup>210</sup>Po excess (probably) from shallow contamination in copper

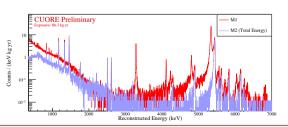
 $ightarrow \sim 10^{-4} {
m cts/(keV\cdot kg\cdot yr)}$  at  $Q_{etaeta}$ 



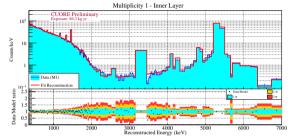
# Building the CUORE background model

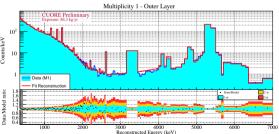






#### Maximize use of available information

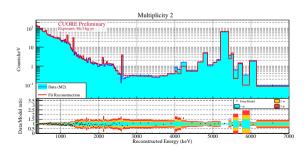
- Split the data into inner and outer layers
- Split data into Multiplicity 1 (M1), Multiplicity 2 (M2) and Multiplicity 2 Sum ( $\Sigma$ 2)


### Background model


- Geant4 simulation of contaminants in different cryostat components ( $\sim 60$  independent fit parameters)
- Bayesian fit using a MCMC Gibbs sampler (JAGS)
- · Flat priors for all parameters except muons






# Building the CUORE background model





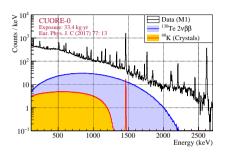
## Why separate spectra?

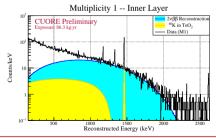
- Inner layer very sensitive to signal (lower background)
- Outer layer sensitive to external backgrounds
- M2 and  $\Sigma 2$  spectra constrain a subset of the backgrounds



## $2\nu\beta\beta$ decay analysis

"Ein Abdruck ihrer Formen In Gamma-Strahlenhintergrund"


> Einstürzende Neubauten Die Explosion im Festspielhaus


#### Results

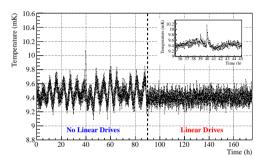
- Almost all events in 1-2 MeV range are  $2\nu\beta\beta$  events (compare to  $\sim 20\%$  in CUORE-0)
- $T_{1/2}^{2\nu} = [7.9 \pm 0.1 ({\rm stat}) \pm 0.2 ({\rm syst})] \cdot 10^{20} {\rm \ yr}$  (PRELIMINARY)
- CUORE-0:  $T_{1/2}^{2\nu} = [8, 2 \pm 0.2 ({\rm stat}) \pm 0.6 ({\rm syst})] \cdot 10^{20} {\rm \ yr}$
- NEMO:  $T_{1/2}^{2\nu} = [7.0 \pm 0.9 ({\rm stat}) \pm 1.1 ({\rm syst})] \cdot 10^{20} \ {\rm yr}$

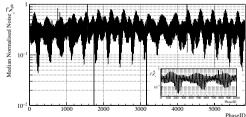
### Systematics

- · Primary systematic from geometric splitting
- No dependence on fit threshold over the range 100-750 keV






## Current status and outlook of CUORE


## System optimization

- Oct.-Dec. 2017: scan of detector performance vs temperature
  - ightarrow Selected 11 mK as optimal temperature
- Jan.-Mar. 2018: warmed up to 100 K to replace a set of gate valves
- · Mar. 2018: back to base temperature
- Mar. 2018: Pulse Tube phase scan to minimize noise

#### Current status

- April calibration still shows 7.6 keV FWHM
   → Still working to achieve the 5 keV goal
- · Stable physics data collection since May 2018
- · Analysis of new data ongoing





# Thank you!

