EBL Review and New Results

Marco Ajello¹, Valdeni Paliya¹, Kari Helgason, Abishek Desai¹, Justin Finke, Alberto Domínguez ¹Clemson University

on behalf of the LAT Collaboration

Reality Check

Build up of the EBL largely undetermined

Marco Ajello

3

This work

- Use 9 years of P8 LAT data
- 759 blazars + 1 GRB
- Measure intrinsic spectrum
 (τ<0.1)
 and extrapolate
- Perform a time-resolved analysis Z 10
- Analysis optimized on simulations

Marco Ajello 4

EBL Detection

- TS~300
- − TS from BLLs ~200
- TS from FSRQs ~100

- Uncertainty on the level of EBL \sim 7% (1 σ)

- In 2012:
 - − Uncertainty was ~25%

200 Preliminary

100 Solution in the second second

b

Notice the consistency between BL Lacs and FSRQs, see also S. Cutini, M. Meyer talks

Before Now

The fun part: Evolution with z from z=0.03 to 3.1

The Cosmic Gamma-ray Horizon

More Fun

$$\tau_{\gamma\gamma}(E_{\gamma}, z_{s}) = c \int_{0}^{z_{s}} \left| \frac{dt}{dz} \right| dz \int_{-1}^{1} (1 - \mu) \frac{d\mu}{2} \int_{2m_{e}^{2}c^{4}/\epsilon_{\gamma}(1 - \mu)}^{\infty} \sigma(\epsilon_{\text{EBL}}, \epsilon_{\gamma}, \mu) n_{\text{EBL}}(\epsilon, z) d\epsilon_{\text{EBL}}$$

$$n_{\mathrm{EBL}}(\epsilon, z) = (1+z)^3 \int_z^\infty \frac{j(\epsilon, z)}{\epsilon} \left| \frac{dt}{dz'} \right| dz'$$

- We can't invert 3-4 integrals, so we need to find another way
- Two methods, both fitted via MCMC to LAT τ data
- Method 1: model j(e,z) has sum of log-normal distributions that can evolve independently
- Method 2: use stellar population models and optimize the parameters of the Cosmic Star Formation History

The EBL with Redshift

Cosmic Luminosity Density

Star Formation History

Re-ionization

Hubble Frontier Fields

Marco Ajello

Re-ionization

Hubble Frontier Fields

The End

- LAT has produced an unprecedented measurement of the EBL optical depth at 12 different epochs
- It allowed us to:
 - measure the EBL well up to z~3
 - measure the UV/optical/NIR luminosity densities
 - measure the Universe's star-formation history
 - Provide the only upper limit to the galaxy luminosity density at the end of the re-ionization era

Faculty Position @ Clemson U.

- Position in MM/TD Astrophysics
- Deadline Oct 1st
- Link: https://jobregister.aas.org/ad/f8545be3

Testing models

- Large power to discriminate between models
- Note: not all models reach 1TeV / z~3

Preliminary

Model	Ref.	Significance of b=0 Rejection ^a	$b^{ m b}$	Significance of b=1 Rejection ^c
Scully et al. (2014) – high	(45)	16.0	0.42±0.03	17.4
Kneiske et al. (2004) – best -fit	(46)	16.9	0.68 ± 0.05	6.0
Gilmore et al. (2012) – fixed	(47)	16.7	1.30 ± 0.10	3.0
Gilmore et al. (2012) – fiducial	(47)	16.6	0.81 ± 0.06	2.9
Dominguez et al. (2011)	(16)	16.6	1.31 ± 0.10	2.9
Franceschini et al. (2017)	(48)	16.4	1.25 ± 0.10	2.5
Gilmore et al. (2009)	(49)	16.7	1.03 ± 0.08	2.4
Inoue et al. (2013)	(50)	16.2	0.87 ± 0.06	2.1
Kneiske & Dole (2010)	(51)	16.8	0.94 ± 0.08	1.7
Helgason et al. (2012)	(17)	16.5	1.10 ± 0.08	1.3
Finke et al. (2010) – model C	(15)	17.1	1.03 ± 0.08	0.4
Scully et al. (2014) – low	(45)	16.0	1.00 ± 0.07	0.1

Re-ionization

Hubble Frontier Fields

Dust

GRB 080916C

AGN

Background gamma-ray sources

- 2 Photons convert into an electron-positron pair if :
 - $E\gamma \times E_{EBL} \ge 2(m_e c^2)^2$
- Photons of 100 GeV convert with 5eV photons (UV)
- Photons of 1 TeV convert with 0.3 eV photons (IR)

Intrinsic spectrum is attenuated

$$\frac{\mathrm{d}N_{\mathrm{obs}}}{\mathrm{d}E} = \frac{\mathrm{d}N_{\mathrm{int}}}{\mathrm{d}E} \times e^{-\tau_{\gamma}(E,z)}$$

Optical Depth

$$\tau_{\gamma} = \int_{0}^{z} d\ell(z) \int_{-1}^{+1} d\mu \frac{1-\mu}{2} \int_{\epsilon'_{\text{thr}}}^{\infty} d\epsilon' \frac{dn_{\text{bkg}}}{d\epsilon} \sigma_{\gamma\gamma}(E', \epsilon', \mu)$$

Marco Ajello

Analysis Procedure: `the boring part'

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- 1. Measure the unabsorbed Blazar spectrum up to ~20 GeV
 - It measures the *intrinsic* spectrum

$$F(E)_{absorbed} = F(E)_{\text{int rinsic}} \cdot e^{-b\tau_{\text{mod }el}}$$

Analysis Procedure: `the boring part'

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- 1. Measure the unabsorbed Blazar spectrum up to ~20 GeV
 - It measures the *intrinsic* spectrum
- 2. Extrapolate it to higher energies
- 3. Plug an attenuation model ($\tau(E,z)$) and fit all sources at once for 'b'
 - 1. b=0: there is no EBL
 - 2. b=1: EBL absorption is as predicted

$$F(E)_{absorbed} = F(E)_{int \, rinsic} \cdot e^{-b \, \tau_{mod \, el}}$$

Analysis Procedure: `the boring part'

We look for the collective deviation of the spectra of blazars from their intrinsic spectra

- 1. Measure the unabsorbed Blazar spectrum up to ~20 GeV
 - It measures the *intrinsic* spectrum
- 2. Extrapolate it to higher energies
- 3. Plug an attenuation model ($\tau(E,z)$) and fit all sources at once for 'b'
 - 1. b=0: there is no EBL
 - 2. b=1: EBL absorption is as predicted
 - 3. b≠1: EBL absorption is there but not as predicted

$$F(E)_{absorbed} = F(E)_{int \, rinsic} \cdot e^{-b \, \tau_{mod \, el}}$$

To determine a blazar's intrinsic shape

- Fit spectra between 1GeV and Emax
 - Emax = maximum energy at which EBL is non important: τ <0.1 for Finke, Dominguez etc
- Default spectrum is a logParabola
 - Test exp-Cutoff power-law with $\gamma_2 = 0.5$ fixed (TS_{c.1} w.r.t logParabola)
 - Test exp-Cutoff power-law with γ_2 free to vary (TS_{c.2} w.r.t logParabola)
- Conditions for choosing a model:
 - logParabola: $TS_{c,1} < 1$ and $TS_{c,2} < 3$
 - exp-Cutoff with $\gamma_2 = 0.5$: TS_{c.1}>1 and TS_{c.2}<3
 - exp-Cutoff with γ_2 free : $TS_{c,2} > 3$
- FSRQs: 376 LPs, $6 \gamma_2 = 0.5$, $32 \gamma_2 = \text{free}$
- BLLs: 281 LPs, 8 $\gamma_2 = 0.5$, 38 $\gamma_2 = \text{free}$

$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_b}\right)^{-(\alpha + \beta \log(E/E_b))}$$

$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{\gamma_1} \exp\left(-\left(\frac{E}{E_c}\right)^{\gamma_2}\right)$$

- For the rest of the analysis γ_2 remains fixed at its best fit value
 - Strong degeneracy with EBL and not convergence otherwise

Simulations

- We employ physically motivated SEDs of FSRQs and BL Lacs that reproduce the characteristics of 3LAC blazars:
 - Peak position, luminosity, disk emission, curvature etc.
- Fermi-LAT data are simulated and analyzed with the previous prescription

