

University of Zurich

Direct Dark Matter Detection with XENON1T

Julien Wulf University of Zurich On Behalf of the XENON Collaboration

TeVPA, 28 August, 2018

DIRECT DARK MATTER DETECTION

Dark Matter Halo

- Elastic scattering of WIMPs with atomic nuclei
- Measure energy of recoiling nucleus in an earth-bound detector (few keV - tens of keV)

$$E_{NR} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim 10 \,\mathrm{keV}$$

DIRECT DARK MATTER DETECTION

Dark Matter Halo

Our Solar System

Milky Way

ESO/L. Calcada

Detector physic

 N_T

- Elastic scattering of WIMPs with atomic nuclei
- Measure energy of recoiling nucleus in an earth-bound detector (few keV - tens of keV)

$$E_{NR} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim 10 \,\mathrm{keV}$$

cs Particle/nuclear physics Astrophy

$$m_w, \sigma_{\rm SI/SD}$$
 $\rho_0, f($
 $P \sim N_T imes \frac{\rho_0}{m_w} imes \langle v \rangle imes \sigma$

XENON-BASED DUAL-PHASE TPC

- S2: Proportional scintillation in gaseous xenon
- - x-y coordinates: S2 hit pattern in top PMTs

z coordinate: Delay time between S1-S2

XENON-BASED DUAL-PHASE TPC

e-, γ backgrounds scattering off shell electrons $\rightarrow ER$ WIMPs (or n) scattering off xenon nucleus \rightarrow NR

Background reduction

Single versus multiple scatter

Fiducialisation of the liquid xenon target

ENLIGHTENING THE DARK

XENON100

2005-2007 15 kg - 15cm drift ~10⁻⁴³ cm²

2000-2010	2
161 kg - 30cm drift	3200
~10 ⁻⁴⁵ cm ²	~

) kg - 1 m drift 8200 kg - 1.5m drift 50 tonnes - 2.6m drift -10⁻⁴⁷ cm² ~10⁻⁴⁸ cm² ~10⁻⁴⁹ cm²

ENLIGHTENING THE DARK

THE XENON1T COLLABORATION

165 scientists, 25 institutions, 11 countries

THE XENON1T EXPERIMENT AT LNGS

Eur. Phys. J. C. (2017) 77:881

EXAMPLE OF AN EVENT IN THE TPC

Developed by the XENON collaboration Publicly available to the community https://github.com/XENON1T/pax

(cm)

 \geq

Processor for Analyzing

ER AND NR CALIBRATIONS

ELECTRONIC RECOIL BACKGROUNDS

Low energy β-spectrum from Kr-85 and Rn-222 (Pb-214)

Predicted: (75 \pm 6) events/(ton·year·keV) **Measured:** 82+5₋₃(sys) ± 3(stat) events/(ton·year·keV) (In 1300 kg fiducial volume and below 25 keVee)

Lowest ER background ever achieved in a DM detector !

222Rn: ~10 µBq/kg

Careful surface emanation control and further reduction by online cryogenic distillation

natKr/Xe: (0.66 ± 0.11) ppt

Achieved with online cryogenic distillation → ⁸⁵Kr not dominant

Material background

Suppressed by fiducialization

JCAP 04, 027 (2016)

Туре	Fraction [%]
²²² Rn	85.4
⁸⁵ Kr	4.3
solar v	4.9
Materials	4.1
¹³⁶ Xe	1.4

Expectations in 1 t FV, in [1,12] keV_{ee}, single scatters, **before ER/NR discrimination**

NUCLEAR RECOIL BACKGROUNDS

Cosmogenic neutrons

Induced by cosmic muons. Reduced to negligible contribution by rock overburden, water passive shield and active Cherenkov Muon Veto. JINST 9, P11006 (2014)

Radiogenic neutrons

From (α, n) and spontaneous fission in detector's materials. Reduced via radiopure material selection, scatter multiplicity and fiducialization. Eur. Phys. J. C. (2017) 77:890

Coherent elastic neutrino-nucleus scattering Mainly from ⁸B solar v. Constrained by flux and cross section measurement. Irreducible background at very low energy (< 1 keV).

JCAP 04,	027	(2016)
-----------------	-----	--------

Туре	Fraction [%]
Cosmogenic Neutrons	<2
Radiogenic neutrons	96.5
CEVNS	2

ADDITIONAL BACKGROUNDS

• Accidental coincidence (AC)

- Lone-S1 signals may accidentally coincide with lone-S2 signals → fake interactions
- Empirical model verified with ²²⁰Rn calibration data and background sidebands

BACKGROUND PREDICTIONS

	1.3 t	0.65 t	
278.8 days live-time	Full ROI	NR Reference	
ER	627 ± 18	0.60 ± 0.13	
neutron	1.43 ± 0.66	0.14 ± 0.07	
CEvNS	0.05 ± 0.01	0.01	-
AC	0.47 +0.27	0.04 +0.02	-
Surface	106 ± 8	0.01	_

 0.80 ± 0.14 **TOTAL BKG** 735 ± 20

Background models

In 4-dimensional space: S1, S2, R, Z

Statistical inference Done with PLR analysis in 1.3 t fiducial volume and full (S1,S2) space, corresponding to [4.9, 40.9] keVnr and [1.4, 10.6] keVee • NR reference region Between NR median and -2σ quantile. Numbers in table are for illustration; final results from complete PLR statistical inference

EXPOSURE

• 279 days high quality data (livetime-corrected) spanning more than 1 year of stable detector's operation. The LXe TPC has been "cold" since Spring 2016

with this type of detector

I tonne x year exposure given 1.3 tonne fiducial volume: the largest reported to-date

BLINDED DATA

• Exposure

1 tonne x year exposure given 1.3 tonne fiducial volume. (278.8 days of science data)

Blinding and salting

UNBLINDING - ENERGY DISTRIBUTION

Results interpreted with un-binned profile likelihood analysis in cS1, cS2, R, Z space (here: cS2b vs cS1, R2)

• Pie charts

Events passing all selection criteria are shown as pie charts representing the relative PDF from each component for the best-fit model for 200 GeV/c² WIMP ($\sigma_{S} = 4.7 \times 10^{-47} \text{ cm}^2$). Larger charts represent events with larger WIMP probability.

UNBLINDING - SPATIAL DISTRIBUTION

Core volume (0.65 t)

Modelled in order to have a negligible amount of surface and neutron background. The two bins, in/out core volume, allow to increase the fiducial volume.

Results interpreted with un-binned profile likelihood analysis in cS1, cS2, R, Z space (here: Y vs X, Z vs R2)

SENSITIVITY AND LIMIT

No significant excess at any scanned WIMP mass

• Spin-independent WIMP-nucleon cross section Strongest exclusion limits (at 90% C.L.) 10^{-43} on WIMP mass > 6 GeV/c²

Sensitivity

7 times better than previous generation experiments (LUX, PANDAX-II)

Limit

Under-fluctuation for masses $\leq 8 \text{ GeV/c}^2$, while over-fluctuation at higher masses

Minimum

 $\sigma_{\text{SI}} < 4.1 \ x \ 10^{-47} \ cm^2$ at 30 GeV/c²

² molonu-44 *N* No-45 10⁻⁴⁵

 10^{-47}

Accepted by PRL ArXiv: https://arxiv.org/abs/1805.12562

SUMMARY AND OUTLOOK

- Successfully operated the first multi-ton scale LXe TPC for > 1 year
- Achieved lowest background in any DM detector: 0.2 events/(t·keV·d)
- Strongest exclusion limits (at 90% C.L.) on WIMP mass > 6 GeV/c²

XENONnT

- Larger fiducial mass
 Use existing systems of XENON1T
 Reduce background by factor 10
 Reach 10⁻⁴⁸ cm² with 20 t x year
- Commissioning in 2019

- stay tuned

 $[cm^2]$

σSI

-nucleon

WIMP

THE XENON1T CRYOGENIC PLANTS

CALIBRATION SOURCES

^{83m}Kr: Stability and **Reconstructed Interaction Position** ---- TPC boundary -20-40z^{rec} [cm] -60 -80-100 500 1000 1500 2000 2500 0 $R_{int}^{rec2}[cm^2]$ Internal Type: 2-3 weeks Freq: Length: 1 day Half life: 1.83h 9.4 keV and 32.1 keV lines (~150 ns delay) homogeneous in volume

Neutrons: Signal Response

Type:	External
Freq:	As needed
Length:	6 weeks (AmBe)
	2 days (generator)

PMT STABILITY

Amplification gain [×10⁶]

EVENT SELECTION & DETECTION EFFICIENCY

- Detection efficiency dominated by 3-fold coincidence requirement
 - Estimated via novel waveform simulation including systematic uncertainties
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in cS1
- 10 GeV (dashed), 50 GeV (dotted) and 200 GeV (dashed-dotted) WIMP spectra shown

STATISTICAL INTERPRETATION

- No significant (>3 sigma) excess at any scanned WIMP mass
- Background only hypothesis is accepted although the p-value of ~0.2 at high mass (200 GeV and above) does not disfavor a signal hypothesis either

- Extended unbinned profile likelihood analysis
- Example left: Background and 200 GeV WIMP signal best-fit predictions, assuming 4.7 x 10⁻⁴⁷ cm², compared to data in 1.3 t and 0.9 t
- Most significant ER & Surface backgrounds shape parameters included
- Safeguard to protect against spurious mis-modeling of background

