Modeling the non-thermal emission from stellar bow shocks

Maria Victoria del Valle

2018 TeV Particle Astrophysics

Runaway stars

Runaway stars

Stars run away from their birth places

Two mechanisms:

- Expelled in Supernova explosion of binary companion
- Expelled in close encounters in massive clusters (produces more!)

Gvaramadze

Bow shock

Star moves supersonically through ISM

IR emission!

Catalogs in the Galaxy Peri+ 2012, 2015 Kobulnicky+ 2017

Bow shock

IR emission!

Massive star, very hot Very luminous!

Swept dust and gas

Colliding plasmas

Pressure balance

$$\rho_{\rm w} V_{\rm w}^2 = \rho_{\rm a} V_{\star}^2$$
:

$$R_0 = \sqrt{\frac{\dot{M}_{\rm w} V_{\rm w}}{4\pi \rho_{\rm a} V_{\star}^2}}$$

System of two shocks forms: wind (reverse) and ISM shock (forward)

Reverse:

Forward Adiabatic, fast V $\sim 2000 \text{ km s}^{-1}$ Radiative, slow V $\sim 30 - 100 \text{ km s}^{-1}$

Non-thermal emission detected

Synchrotron emission from massive runaway star

Non-thermal emission Bow shock region

Implies B ~ 100 μG

Benaglia+ 2010

There are relativistic electrons in the source

Non-thermal emitters at higher energies?

• Simple models predict gamma and X-rays:

Particles accelerated at the reverse shock emit mainly:

Inverse Compton: target dust photons

Synchrotron: target local magnetic field

del Valle+ 2012 del Valle+ 2014

Benaglia+ 2010

Looking for more:

- @ gamma rays:
- Fermi from archive data (Schulz et al. 2014), sample E-BOSS ~ 30 (Peri +2012), no data. Upper limits too high or predictions too optimistic, or both;)
- H.E.S.S. new sample (H.E.S.S. Collaboration 2018) Upper limits also too high,

$$L (E > 1 \text{ TeV}) < 10^{-2} L_{w}$$

- @ X-rays (motivated AE Aurigae)
- *XMM* two very energetic sources (Toalá+ 2016): no emission reveled
- More XMM: five targets from proposal 2014
 (de Becker, del Valle+2017): upper limits.
 - For X-rays better resolution is needed to distinguish thermal from non-thermal (at least one order of magnitude).

Recently two candidates: Fermi 3FGL sources

10³⁶ IRAS + WISE (3.4 -100 micron) 10³⁵ Permi-LAT (0.1-100 GeV) 10³⁰ Detection Vupper limit Model fit 10²⁹ Model fit 10²⁰ 10³ 10³

star LS 2355

Sanchez-Ayaso, del Valle +2018

More complex model: HD structure + non-thermal particles

- Density and velocity field from HD simulations
 B needed for non-thermal particles
 (it is not dynamically important in the fluid structure)
- System reaches stationary state
 — we use simulation results as a background for solving transport of energetic particles
- Explore parameter space

HD simulations

The problem can be considered as axisymmetric: we use cylindrical coordinates:

r and z

Domain is a cylindrical rectangular box

Results

Relativistic particles

Domain from the HD simulation

Solve the transport equation for electrons and protons

$$\frac{\partial N(E, \vec{x}, t)}{\partial t} = \nabla(D(E, \vec{x}, t)\nabla N(E, \vec{x}, t)) - \nabla(\mathbf{V}(\vec{x}, t)N(E, \vec{x}, t)) - \frac{\partial}{\partial E}(P(E, \vec{x}, t) N(E, \vec{x}, t)) + Q(E, \vec{x}, t).$$

2D spatial cylindrical coordinates + energy Own code

Injection

Particles are injected at the reverse shock, which is strong through all the solid angle

$$Q(t, E, r, z) =$$

$$Q_0 E^{-\alpha} \rho(r, z)/\rho_0 \delta^2 ((r, z) - (r_{\rm rs}, z_{\rm rs}))$$

Powered by wind kinetic energy:

$$L_{\rm w} = 0.5 \dot{M} V_{\rm w}^2$$

Losses: Magnetic field

$$B_{\star} \sim 100 G$$

 $R_{\star} \sim 10^{12} cm$

$$B_{\text{wind}} = B_{\star} \left[1 + \left(\frac{V_{\text{w}}}{V_{\text{rot}}} \right)^{2} \right]^{-1/2} \left(\frac{R_{\star}}{R} \right) \left[1 + \left(\frac{R_{\star} V_{\text{w}}}{R V_{\text{rot}}} \right)^{2} \right]^{1/2}$$

Four regions:

- Stellar wind
- Shocked wind
- Shocked ISM
- ISM

Stellar wind (follow Volk & Forman 82)

Losses: radiation fields

- Stellar radiation field, BB T $\sim 10^4$ K, U $\propto R^{-2}$
- Dust emitted photons:

$$T_{\rm gr} = \left(\frac{R_{\star}}{\sqrt{r^2 + z^2}}\right)^{1/3} \frac{T_{\star}^{2/3}}{(4\pi\langle Q_0 \rangle)^{1/6} a_{\mu \rm m}^{1/3}}. \qquad \boxed{2}_{-5}$$

Results

Electrons @ 10 GeV

Synchrotron @ 1.4 GHz

8 v = 1.4 GHz4 0 [od] 4 -8 -12 -18 8 12 -20 -12 -8 20 x [pc] 10²² 10^{23} 10²⁰ 10^{21} 10^{24} 10^{25} Q_{sy} [erg⁻¹ cm⁻² s⁻¹]

Inverse Compton @ 10 GeV

del Valle & Pohl (2018)

SED

Results

Summary

- The interaction of the relativistic electrons produce non-thermal emission:
- Synchrotron (maximum energy ~ visible, important at radio)
- Inverse Compton scattering:
 - IR field & Stellar field (maximum energy ~ 100 GeV)
- Low emission X-rays (requires high B)
- Transport effects are very important, particle lose only 0.4% of their power
- Protons diffuse almost without losing their energy as predicted in previous works
- → Next step: MHD simulations + polarization (see poster GR 25)

Thanks!

Losses: Magnetic field

B₄ ~ 100 G

 $R_{\star} \sim 10^{12} \text{ cm}$

Four regions:

Stellar wind Shocked wind Shocked ISM ISM

Reverse shock $\rho_{\rm rshock}(r,z)$ discontinuity

ISM:

 $B_{\text{ISM}} \sim \mu G$

After shock: compress with density

$$B(r,z) = B_{ISM} \times F_2$$

After shock: compress with density

$$B(r,z) = B(r_p, z_p) \times F_1$$

Where
$$\mathcal{F}_{1,2} = \sqrt{2(\mathcal{K}_{1,2}^2 - 1)/3 + 1}$$
, with $\mathcal{K}_1 = \rho(r_{\rm rs}, z_{\rm rs})/\rho(r, z)$, and $\mathcal{K}_2 = \rho(r_{\rm ISM}, z_{\rm ISM})/\rho(r, z)$.

$$B_{\text{wind}} = B_{\star} \left[1 + \left(\frac{V_{\text{w}}}{V_{\text{rot}}} \right)^{2} \right]^{-1/2} \left(\frac{R_{\star}}{R} \right) \left[1 + \left(\frac{R_{\star} V_{\text{w}}}{R V_{\text{rot}}} \right)^{2} \right]^{1/2}$$

Stellar wind (follow Volk & Forman 82)

@ X-rays!

Lopez-Santiago+ 2012

XMM archive observations reveal X-ray emission from AE Aurigae bow shock !!

Apparently Non-thermal: IC e + dust photons

Ingredients

Analyzing the no-data

We use simple model to fit the upper limits for our 5 targets: fit fundamental parameters:

Source	<i>B</i> (G)	$\chi_{ m rel}$	α	$\frac{E_{\text{max}}}{(m_e c^2)}$	$\chi_{ m IR}$	\mathcal{D}
#1	10^{-4} 8.9×10^{-6} 2.6×10^{-5} 1.6×10^{-5} 1.4×10^{-5}	1.0	1.8	6.4×10^{3}	1.0	5.2×10^{-1}
#2		0.3	2.1	5.5×10^{5}	0.4	5.9×10^{-3}
#3		0.1	2.1	4.3×10^{5}	0.1	8.1×10^{-3}
#4		0.06	2.4	7.2×10^{5}	0.05	1.3×10^{-2}
#5		0.1	2.1	3.4×10^{5}	0.2	1.0×10^{-2}

Thermal conduction

Circunstellar material presents strong temperature gradients — thermal conduction

Their effects on massive star winds well studied, can not be neglected

ISM

- Medium is flowing with V_{*}
- Density ~ 0.57 cm⁻³ , μ = 0.67 (fully ionized) Strömgren radius >> $R_{_{0}}$
- T ~ 8000 K

Analyzing the no-data

We use simple model to fit the upper limits for our 5 targets: fit fundamental parameters:

Source	B (G)	$\chi_{ m rel}$	α	$\frac{E_{\rm max}}{(m_e c^2)}$	$\chi_{ m IR}$	\mathcal{D}	
#1 #2 #3 #4 #5	10^{-4} 8.9×10^{-6} 2.6×10^{-5} 1.6×10^{-5} 1.4×10^{-5}	1.0 0.3 0.1 0.06 0.1	$\frac{2.1}{2.4}$	6.4×10^{3} 5.5×10^{5} 4.3×10^{5} 7.2×10^{5} 3.4×10^{5}	0.1	5.2×10^{-1} 5.9×10^{-3} 8.1×10^{-3} 1.3×10^{-2} 1.0×10^{-2}	Maybe

Mmmm nope ...

4 out of 5

HD simulations

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho + \rho (\nabla \cdot \mathbf{v}) = 0,$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} + \frac{\nabla p}{\rho} = \mathbf{0},$$

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho + \rho c_s^2 \nabla \cdot \mathbf{v} = (\gamma - 1) \left[\Phi(T, \rho) + \nabla \cdot \mathbf{F}_c \right];$$

$$c_{\rm s} = \sqrt{\gamma \, p/\rho} \label{eq:cs}$$

$$E = \frac{p}{(\gamma - 1)} + \frac{\rho v^2}{2}, \qquad \qquad T = \mu \frac{m_{\rm H}}{k_{\rm B}} \frac{p}{\rho}, \label{eq:cs}$$

$$T = \mu \frac{m_{\rm H}}{k_{\rm B}} \frac{p}{\rho}, \label{eq:cs}$$

Wind model

Injected within a radius located in the origin

$$ho_{
m w}=rac{\dot{M}}{4\pi r^2 v_{
m w}} \qquad Typical \ {
m O \ star}$$
 $ho_{
m W}= \frac{\dot{M}}{4\pi r^2 v_{
m w}} \qquad 10^{-6} \ {
m M_s \ yr^{-1}} \qquad 2000 \ {
m km \ s^{-1}}$

Reverse shock → stronger, acceleration of particles