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Modeling the non-thermal emission from 
stellar bow shocks 



  

Runaway stars

Runaway stars have V > 30 km / s 

Two populations!

Distribution of Galactic 
star velocities 



  

Runaway stars

 

Two mechanisms: 

 Expelled in Supernova explosion of binary companion

 Expelled in close encounters in massive clusters (produces 
more!)
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Stars run away from their birth places



  

Bow shock

IR emission! 

Catalogs in the Galaxy 

Star moves supersonically 
through ISM 

Peri+ 2012, 2015
Kobulnicky+ 2017



  

Bow shock

IR emission! 

Massive star, very hot 
Very luminous! 

Swept dust and gas



  

Colliding plasmas

System of two shocks forms: wind (reverse) and ISM shock (forward) 

Pressure balance

(NASA / C. Reed)

Reverse:
Adiabatic, fast V ~ 2000 km s-1

Forward
Radiative, slow V ~ 30 – 100 km s-1



  

Non-thermal emission detected

Synchrotron emission 
from massive runaway star

Non-thermal emission 
Bow shock region
   
Implies B ~ 100 µG

There are relativistic electrons
in the source

BD+43º3654

Benaglia+ 2010



  

Non-thermal emitters at higher energies?

Simple models predict gamma and X-rays:

Benaglia+ 2010del Valle+ 2012
del Valle+ 2014

Particles  accelerated at the reverse shock emit mainly: 
Inverse Compton: target dust photons
Synchrotron: target local magnetic field  



  

Looking for more: 

@ gamma rays: 

Fermi from archive data (Schulz et al. 2014),  sample E-BOSS ~ 
30 (Peri +2012), no data. Upper limits too high or predictions 
too  optimistic, or both ;)

H.E.S.S. new sample (H.E.S.S. Collaboration 2018) Upper limits 
also too high, 

L (E > 1 TeV) < 10-2 L
w

@ X-rays (motivated AE Aurigae)

XMM  two very energetic sources (Toalá+ 2016):

no emission reveled 

More XMM: five targets from proposal 2014

(de Becker, del Valle+2017):  upper limits. 

For X-rays better resolution is needed to distinguish thermal 
from non-thermal (at least one order of magnitude).  



  

Recently two candidates: Fermi 3FGL sources

star LS 2355λ Cep

Sanchez-Ayaso, del Valle +2018



  

More complex model:
HD structure + non-thermal particles

Density and velocity field from HD simulations

B needed for non-thermal particles 

(it is not dynamically important in the fluid structure)

System reaches  stationary state          we use 
simulation results as a background for solving 
transport of energetic particles

Solve the transport equation (linear approx.) for 
injected electrons and protons          Estimate non-
thermal emission

Explore parameter space 



  

HD simulations

The problem can be considered as 
axisymmetric: we use cylindrical coordinates: 

r and z

Domain is a cylindrical rectangular box

Outflow

Symmetric

Fresh material inflowing

Outflow
r

z
Star at origin

Incoming ISM
M = 10-6 M

s
  yr-1

V
w
 = 2000 km s-1

O star:

V
*
 = 40 km s-1

.



  

Results



  

Relativistic particles

Domain from the HD simulation

Solve the transport equation for electrons and protons 

2D spatial cylindrical coordinates + energy

Own code



  

Injection

Particles are injected at the reverse shock, which is strong 
through all the solid angle

Powered by wind kinetic energy: 



  

Losses: Magnetic field

   Four  regions:
 

Stellar wind 
Shocked wind 
Shocked ISM
ISM

Stellar wind (follow Volk & Forman 82)

B
* 
~ 100 G

R
*
  ~ 1012 cm



  

Losses: radiation fields

Stellar radiation field, BB  T ~ 104 K, U ∝ R-2

Dust emitted photons:



Results Electrons @ 10 GeV

Synchrotron @ 1.4 GHz Inverse Compton @ 10 GeV

del Valle & Pohl (2018)



SED

del Valle & Pohl (2018)



Results

del Valle & Pohl (2018)



Summary

The interaction of the relativistic electrons 
produce non-thermal emission:

Synchrotron (maximum energy  ~ visible, important at radio)

Inverse Compton scattering: 

IR field & Stellar field (maximum energy ~ 100 GeV)

Low emission X-rays (requires high B) 

Transport effects are very important, particle lose only 0.4% 
of their power 

Protons diffuse almost without losing their energy as predicted in 
previous works 

➔Next step: MHD simulations + polarization (see poster GR 25)



  

Thanks!



  

Losses: Magnetic field
   Four  regions:
 
● Stellar wind 
● Shocked wind 
● Shocked ISM
● ISM

Reverse shock ρrshock(r,z)
discontinuity

Stellar wind (follow Volk & Forman 82)

B
* 
~ 100 G

R
*
  ~ 1012 cm

B(r,z) = B(r
p
, z

p
) x F

1

After shock: compress with density 

ISM:
B

ISM
 ~ μG 

B(r,z) = B
ISM

 x F
2

After shock: compress with density 



  

@ X-rays!

XMM archive observations reveal X-ray emission
from AE Aurigae bow shock !!

Apparently Non-thermal: IC e + dust photons 

Lopez-Santiago+ 2012



  

Ingredients

D power-law in E From simulation:
Velocity field

From simulation:
Density field ρ(r,z)
From density B(r,z)

Analytical
But depends
on ρ(r,z)  



  

Analyzing the no-data

We use simple model to fit the upper limits for our 5 targets: 
fit fundamental parameters: 



  

Thermal conduction

Circunstellar material presents strong temperature 
gradients        thermal conduction

Their effects on massive star winds well studied, can 
not be neglected



  

ISM

Medium is flowing with – V
*

Density ~ 0.57 cm-3 , µ = 0.67  (fully ionized)

Strömgren radius >> R
o

T ~ 8000 K

Meyer et al. 2016



  

Analyzing the no-data

We use simple model to fit the upper limits for our 5 targets: 
fit fundamental parameters: 

Mmmm nope ...

Maybe

4 out of 5



  

HD simulations

http://plutocode.ph.unito.it/



  

Wind model

Injected within a  radius located in the 
origin  

Typical O star

2000 km s-1

10-6 M
s
  yr-1



  

Closer look

Forward shockReverse shock

Cool layer

Thermal diffusion
effects

Reverse shock → stronger, acceleration of particles

z
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