

Understanding Very High Energy Cosmic Rays with VERITAS

Andriy Petrashyk for the VERITAS collaboration

Outline

- Brief introduction to VERITAS and the Imaging Atmospheric Cherenkov Technique
- Cosmic ray electron spectrum
- Cosmic ray iron spectrum
- An update on the starburst galaxy M82

Introduction to VERITAS

- Array of four 12m IACTs in Southern Arizona, USA
- Employs ~100 scientists
- Full operation started in Fall 2007
- Two major upgrades:
 - Relocation of T1 in Summer 2009
 - Camera upgrade in Summer 2012
- Energy range 85 GeV 30 TeV for gamma rays
- Energy resolution 15-25%
- Angular resolution < 0.1° at 1TeV
- Pointing error < 50"

Atmospheric Cherenkov Technique

Atmospheric Cherenkov Technique

- Hadronic showers are much less uniform than EM showers → traditionally, use Hillas parameters to discriminate between them
- Direction cut is one of the most powerful ways to get rid of background as the majority of VERITAS sources are point-like

- γ-rays become background when looking for electrons
- No way to define background regions when detecting cosmic rays

VERITAS CR Electron Spectrum

 TeV electrons lose energy very quickly while propagating in the Galaxy via synchrotron radiation and inverse-Compton scattering
→ propagation distance ~1 kpc → important probe of the local accelerating and diffusive processes

AMS Collaboration 2011

- Existence of a positron-rich excess with several possible explanations
 - Cosmic ray diffusion/interaction models are wrong
 - Local source of positrons, like a nearby pulsar or SNR
 - More exotic causes, like dark matter

 Ground-based electron measurements can extend spectra out to higher energies thanks to much higher effective areas

VERITAS CR Electron Spectrum

- Use Boosted Decision Trees, a machine learning technique, to discriminate between electrons and protons: maps a large parameter space into a single score (signal-like vs background-like)
 - Signal training done on electron simulations
 - Background training done on real data, masking out the galactic plane and known sources of gammas

- Low BDT score excess due to Helium and higher-Z elements
- High BDT score excess due to electrons
- The two populations are not completely separated use binned extended likelihood fit on electron and proton simulations for BDT > 0.7 to find the fraction of electrons

VERITAS CR Electron Spectrum

- 296 hours of post-T1 move, pre-camera upgrade data
- Covers 300 GeV to 5 TeV
- Broken power law with a break at 710 ± 40_{stat} GeV
- Index transitions from $3.2\pm0.1_{\text{stat}}$ below to $4.1\pm0.1_{\text{stat}}$ above the break

- Consistent with previous measurements
- Second ground-based high-statistics measurement of a break at ~1TeV
- Paper submitted to Phys. Rev. D

VERITAS CR Iron Spectrum

- Measuring the cosmic ray elemental composition to energies as high as the 'knee' can provide clues to cosmic ray origins and acceleration mechanisms
- Composition of cosmic rays as a function of energy can teach us about their sources

Particle Data Group

VERITAS CR Iron Spectrum

 Use Direct Cherenkov (DC) light emitted by cosmic ray primaries in the atmosphere before the first interaction

 Intensity proportional to Z² → can be used to identify a heavy primary particle

- Use Image Template fitting to select DConly images
- Use Random Forests to estimate background

VERITAS CR Iron Spectrum

- 71 hours of post-T1 move, pre-camera upgrade high-quality data
- Covers 20 TeV 500 TeV

- Power law with index 2.82±0.3_{stat}
- Agrees well with previous measurements
- Extends the spectrum to higher energies
- Paper accepted by Phys. Rev. D

- M82 is the prototypical starburst galaxy
- Interacting with a group of galaxies
 - At least one major interaction with the larger spiral M81
 - Tidal forces → active starburst region
- High star formation rate: ~10x Milky Way
 - − High supernova rate: ~0.1-0.3/year
- CR origin? SNR + wind-zones of massive stars
 - High CR density: ~100x Milky Way
 - High gas density: ~150 particles/cm³
 - CR hadrons + gas → pions → γ
 - CR electrons + ambient photons → γ

- VERITAS detected M82 in 2009
- Among weakest-ever VHE sources, 0.9% Crab
- No clear determination of the origin of the VHE emission

- VERITAS has since undergone two upgrades
- The exposure on M82 has increased: ~137 hours → ~240 hours
- We have deployed new analysis methods

- Image template fitting offers superior reconstruction
- Multivariate analysis methods, specifically BDTs, give a better separating efficiency
- Both methods can be used in conjunction to significantly reduce background and increase γ sensitivity

- Post-camera upgrade data allow lowering the energy threshold
- Image template method and boosted decision trees offer a remarkable improvement over standard analysis
- Much tighter θ^2 cut of 0.006 deg² vs 0.01 for standard analysis

- New results consistent with the published ones within errors
- Total flux at the lower end of the published value – even weaker than initially estimated
- Analysis ongoing

Conclusion

- VERITAS is a robust instrument for study of cosmic rays
- The measured cosmic ray electron spectrum is consistent with other instruments, supporting a spectral break at ~1TeV
- The cosmic ray iron spectrum has been extended to 500 TeV, and is consistent with previous measurements in the overlapping energy range
- The spectrum of M82 to be updated soon
- We welcome proposals from external collaborators for observing time, due ~early September for next season; contact Science Working Group Coordinators to get involved

https://veritas.sao.arizona.edu

BACKUP: electron fraction fit

BACKUP: iron fraction estimate

$$\begin{array}{lll} \textit{N}_{\textit{on}}^{\textit{data}} & = & \alpha_{\textit{s}} \cdot \textit{N}_{\textit{s}} + \alpha_{\textit{b}} \cdot \textit{N}_{\textit{b}} \\ \textit{N}_{\textit{off}}^{\textit{data}} & = & \beta_{\textit{s}} \cdot \textit{N}_{\textit{s}} + \beta_{\textit{b}} \cdot \textit{N}_{\textit{b}} \end{array} \\ \Longrightarrow \textit{N}_{\textit{s}} = \frac{\textit{N}_{\textit{on}}^{\textit{data}} - \frac{\alpha_{\textit{b}}}{\beta_{\textit{b}}} \cdot \textit{N}_{\textit{off}}^{\textit{data}}}{\alpha_{\textit{s}} - \frac{\beta_{\textit{s}} \cdot \alpha_{\textit{b}}}{\beta_{\textit{b}}}} \\ \\ \Longrightarrow \textit{N}_{\textit{s}} = \frac{\textit{N}_{\textit{on}}^{\textit{data}} - \frac{\alpha_{\textit{b}}}{\beta_{\textit{b}}} \cdot \textit{N}_{\textit{off}}^{\textit{data}}}{\alpha_{\textit{s}} - \frac{\beta_{\textit{s}} \cdot \alpha_{\textit{b}}}{\beta_{\textit{b}}}} \end{array}$$