The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic ray acceleration

The MAGIC telescopes

- 2 x 17 m telescopes in stereo configuration since 2009
- Energy threshold 50 GeV (30 GeV with SumTrigger) ⇒ farthest γ-ray cosmic horizon reachable among stereo IACTs
- Fast rotation < 30 seconds for 180° ⇒ look for fast transients
- Operation in moderate to strong moonlight ⇒ large duty cycle
- Sensitivity ~0.66% of Crab in 50 h above 220 GeV
- Wide energy range from 50 GeV up to ~50 TeV
- Energy resolution ~ 15% (23%) @ 1TeV (100 GeV)
- Angular resolution ~ 0.06 (0.1) degrees @ 1TeV (100 GeV)
- Field of View ~ 3.5 degrees

The MAGIC follow-up program

- MAGIC pioneered the Neutrino Triggered Target of Opportunity (NToO) program since 2007 [M. Ackermann et al. arXiv:0709.2640]
- MAGIC is part of the Gamma-Ray Follow-up program since 2012 [M.G. Aartsen et al., JINST, 11, P11009 (2016)]
- More than 30 hours invested during previous cycle (2017)
- Search for counterparts of v_μ tracks: HESE-37, HESE-38 and a multi-PeV track (see ATel#7856)
- HESE/EHE real-time alerts: e.g. 160427A, 160731A (AMON GCN)

Also, long-term monitoring program of known TeV emitters

[https://magic.mpp.mpg.de/backend/publications/articles]

IceCube 170922A (EHE)

- Probability of astrophysical origin 56.6%
- At 6 arc-minutes from the direction of TXS 0506+056
- Neutrino energy @ 90% C.L.: lower limit is 183 TeV (200 TeV), upper limit is 4.3 PeV (7.5 PeV) for a spectral index of -2.13 (-2.0)

MAGIC observations

More insights on observations and results: talk by L. Foffano on August 29th 2018

- 41 hours from September 24th to November the 2nd
- γ-ray energy spectrum measured up to about 400 GeV, power-law spectral index ranging from (-4.0 ± 0.3) to (-3.5 ± 0.4)
- VHE flux clearly variable on daily timescales
- 2 distinctive flares observed, spectrum measured also in between (hereafter the "low state")

Multi-wavelength data

- Public data analyzed and combined within 24 hours from MAGIC measurements for quasi-simultaneous SED
- TXS 0506+056 classified as an intermediate synchrotron peaked (ISP) or low synchrotron peaked (LSP) Blazar, luminosity typical for a LSP [Ackermann M., et al., 2015, ApJ, 810, 14, C. Righi et al. arXiv:1807.10506]

A neutrino emitter?

- High energy neutrinos can be generated through pγ interactions in the jet
- BL Lac objects generally disfavored compared to FSRQs due to low density of target photon fields [e.g. Murase et al., 2014, Phys. Rev. D, 90, 023007]
- For $E_v \sim 300$ TeV: protons with $E_p \geq 6$ PeV must interact with photons with energies above the photo-pion threshold, $\epsilon \geq m_\pi m_p c^4/E_p \approx 10^2 10^3$ eV, in the UV to soft X-ray range

External target photon field?

- External photons can increase photo-meson rate e.g.
 - from radiative inefficient accretion flows [C. Righi et al . arXiv:1807.10506]
 - from structured jets [Ghisellini G., Tavecchio F., Chiaberge M., 2005, A&A, 432, 401]: synchrotron photon density from sheath seen boosted in jet frame $U' \simeq U\Gamma_{\rm rel}^2 \qquad \Gamma_{\rm rel} = \Gamma_{\rm s}\Gamma_{\rm l}(1-\beta_{\rm s}\beta_{\rm l})$

Limb brightening observed in the jet of M87 Kovalev+ 2007

More insights: talk by F. Tavecchio on August 29th 2018

The model

MAGIC Coll., ApJ 863, L10, arXiv:1803.04300

- Cylinder with spine radius $R_j=10^6$ cm ($t_{var} \sim 1$ day), length $H_j=R_j$. For the outer layer $R_s=H_s=1.5^*R_j$
- Leptonic emission: synchrotron, SSC, EC
- Hadronic emission: photo-meson cascade, BH cascade, synchrotron radiation from protons and muons
- SED of TXS 0506+056 motivates small viewing angle ($\theta_{\text{view}} = 0.8^{\circ}$)

Model parameters

- Bulk Lorentz factor spine $\Gamma_j = 22$, sheath $\Gamma_s = 2.2$ ($\delta_j \simeq 40$ and $\delta_s \simeq 3.7$)
- Parameters tuned to reproduce γ-ray data and neutrino event rate without overproducing X-rays:
 - Magnetic field
 - Electron spectrum: broken power-law E_{e,min}, E_{e,br}, E_{e,max}, n₁,n₂
 - Proton spectrum: power-law E_p^{-2} with exp. cutoff E_{pmax} in the range

Model results

- Photopion efficiency $f_{p\gamma}(E_p \sim 6 \text{ PeV}) \sim O(10^{-4})$
- $\tau_{\gamma\gamma}(E_{\gamma}\sim 12~GeV)\sim 0.1 \Longrightarrow \tau_{\gamma\gamma}(E_{\gamma}\sim 100~GeV)\sim 1$ Consistent with observed GeV-TeV break

Model results

- Results similar to purely leptonic models without protons
- Jet power 4x10⁴⁵ to 10⁴⁶ erg/s $P_{\rm jet} = \pi R^2 \Gamma^2 c (U_e + U_p + U_B)$
- Highest neutrino rate found for $E_{pmax} = 10^{16} \, eV$

Model parameters in the jet coming frame

State	MJD 58029-30	Lower VHE
B [G]	2.6	2.6
$E_{\min} [eV]$	3.2×10^8	2.0×10^8
$E_{\rm br} \ [{\rm eV}]$	7.0×10^8	9.0×10^8
$E_{\rm max} \ [{\rm eV}]$	8×10^{11}	8×10^{11}
n_1	2	2
n_2	3.9	4.4
$U_e \ [{\rm erg} \ {\rm cm}^{-3}]$	4.4×10^{-4}	3.6×10^{-4}
$U_B [{\rm erg} {\rm cm}^{-3}]$	0.27	0.27
$U_p \ [{\rm erg} \ {\rm cm}^{-3}]$	1.8	0.7
$P_e [{\rm erg \ s}^{-1}]$	2×10^{42}	1.6×10^{42}
$P_p [{\rm erg \ s}^{-1}]$	8×10^{45}	3×10^{45}
$P_B [{\rm erg \ s}^{-1}]$	1.2×10^{45}	1.2×10^{45}

Timescales

- The maximum proton energy $E_{p,max}$ can be estimated by balancing t_{acc} (E) and the shortest loss timescale $t_{loss} = min[t_{ad}, t_{syn}, t_{y\pi}, t_{ye\pm}]$
- $E_{p,max}$ (in the jet co-moving frame) can be in the range $\sim 10^{14}$ to 10^{18} eV

Conclusions

- First time observation of VHE γ-rays in coincidence with a high energy neutrinos yielded by the MAGIC telescopes
- Monitoring of TXS 0506+056 for 41 hours with the MAGIC telescopes yielded:
 - variability timescale at VHE energies < 1 day
 - 2 distinctive VHE γ-ray flares and a low state with similar spectrum
- The neutrino and MWL data can be interpreted with a one-zone model and external photons from structured jets
- The inferred proton luminosity is in the range ≈ 10⁴⁵ 4x10⁴⁶ erg/s and maximum CR energies in the comoving frame of 10¹⁴ to 10¹⁸ eV

