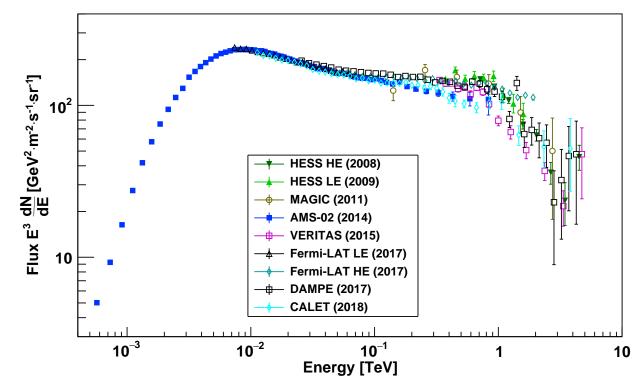
The High-Energy End of the Cosmic-Ray Electron Spectrum

D. Kerszberg*, M. Kraus, D. Kolitzus, K. Egberts, S. Funk, J.-P. Lenain, O. Reimer & P. Vincent for the H.E.S.S. Collaboration

*now at IFAE-BIST

The H.E.S.S. experiment

H.E.S.S. phase I

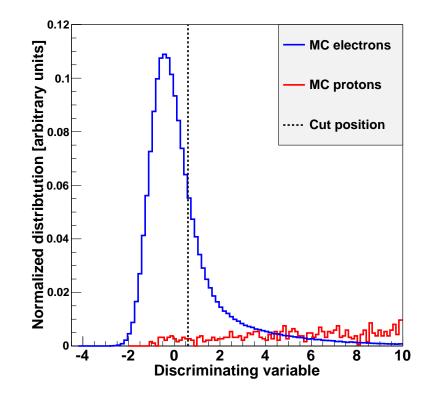

- 4 telescopes since 2003
- 960 PMT/camera
- Field of view: 5°
- Stereoscopic reconstruction

H.E.S.S. phase II

- 5th telescope in 2012
- 2048 PMT
- Field of view: 3.5°

Cosmic-ray electron spectrum measurements status

- 2008/2009 H.E.S.S. results with multivariate analysis.
- Now: up to 15 years of observations with H.E.S.S.


F. Aharonian *et al.*, A&A 508 (2009), 561 F. Aharonian *et al.*, Phys. Rev. Lett. 101 (2008), 261104

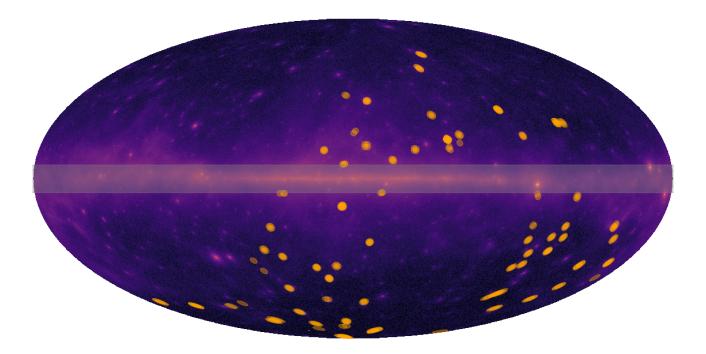
H.E.S.S. standard data analysis method

The Model Analysis:

- Log-likelihood comparison between recorded images and pre-calculated templates including Night Sky Background
- Widely used for H.E.S.S. analysis
- Improved discrimination based on the goodness of fit compared to previous analysis

M. de Naurois & L. Rolland, Astropart. Phys., 32 (2009), 231-252

Dataset for the electron analysis


In addition to the standard data quality selection, we used the following criteria:

- Pointing position is **more than 7 degrees** away from the Galactic plane
- H.E.S.S. I runs with 4 telescopes operational
- Zenith angle is < 28°</p>

Excluded regions: 0.4° around any known γ -ray source.

Dataset for the electron analysis

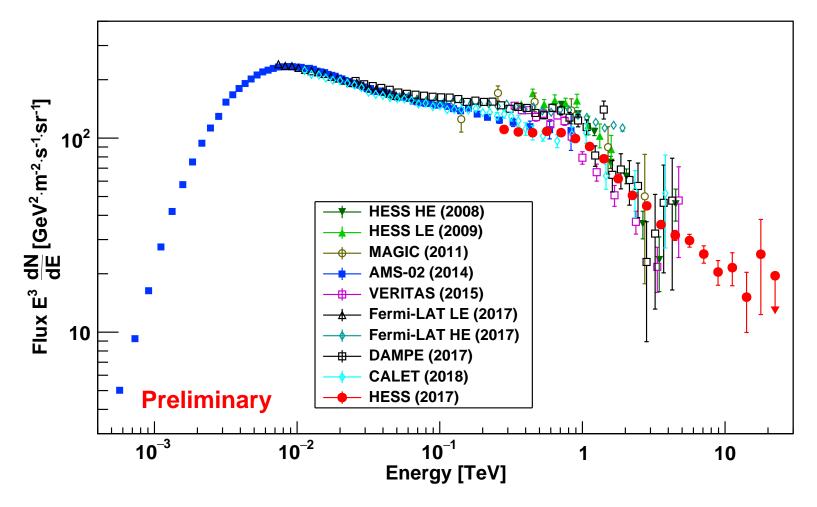
Final dataset consists in 2742 runs for a total livetime of \sim **1186 hours**.

-> about 4 times more data than for the previous analysis

Daniel Kerszberg . The High-Energy End of the Cosmic-Ray Electron Spectrum - TeVPA 2018 - 30 August 2018 .

Estimated background contamination

Preliminary estimation of proton contamination with MC simulations (knowing the actual measured fluxes of electrons and protons):


Energy	Expected contamination from protons
1 TeV	$\sim 15\%$
2 TeV	$\sim 7\%$
> 5 TeV	< 10%

Energy range of the analysis : [0.25 TeV; 25 TeV]

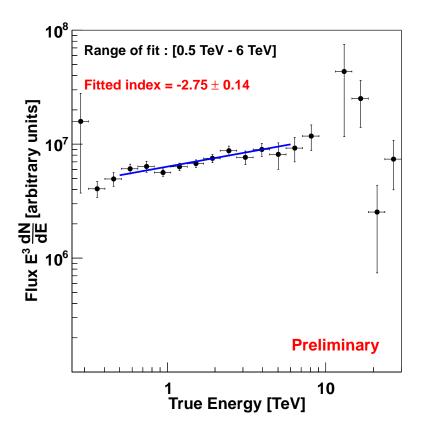
Total number of electron-like detected events : 480 739

New H.E.S.S. cosmic-ray electron spectrum

Daniel Kerszberg. The High-Energy End of the Cosmic-Ray Electron Spectrum - TeVPA 2018 - 30 August 2018.

Background issue

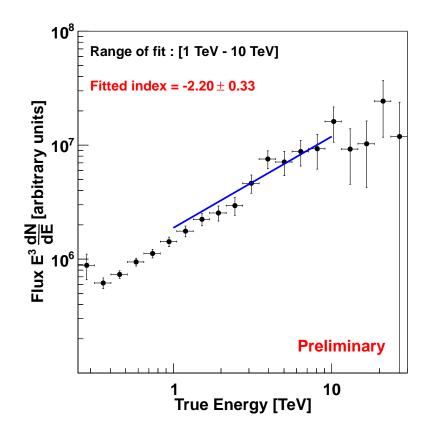
Contamination from protons is the main issue for an electron analysis!


Because electron spectrum is steeper than proton spectrum, misidentified protons could induce an artificial **hardening** in the electron spectrum even if only a small fraction of protons is misidentified as electrons.

Background issue

Contamination from protons is the main issue for an electron analysis!

Because electron spectrum is steeper than proton spectrum, misidentified protons could induce an artificial **hardening** in the electron spectrum even if only a small fraction of protons is misidentified as electrons.


Injection of **MC protons** with simulated spectral index of **-2.8** reconstructed using **protons** acceptance.

Background issue

Contamination from protons is the main issue for an electron analysis!

Because electron spectrum is steeper than proton spectrum, misidentified protons could induce an artificial **hardening** in the electron spectrum even if only a small fraction of protons is misidentified as electrons.

Injection of **MC protons** with simulated spectral index of **-2.8** reconstructed using **electrons** acceptance.

HESS LE (2009)

AMS-02 (2014)

CALET (2018)

--- HESS Fit (2017)

Energy [TeV]

Fermi-LAT HE (2017)

1 1 1 1

10

Preliminary

12/17

Fitting of the spectrum

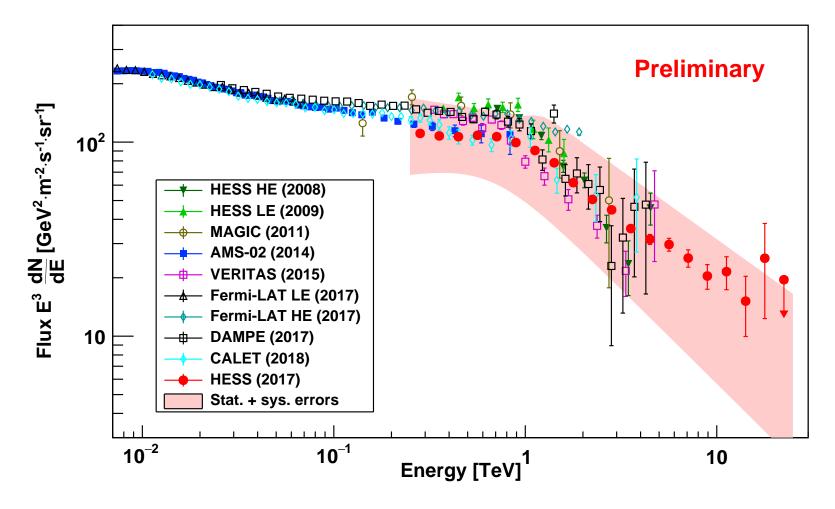
Fit function is a smooth broken power law:

lpha= 0.12 \pm 0.01 (stat)

(²-1-s⁻¹-sr⁻¹)

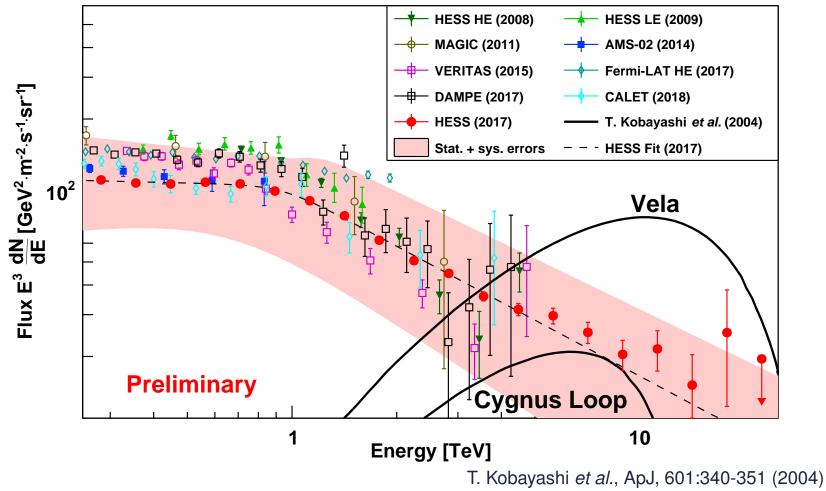
Systematics uncertanties

The systematics studies included:


- Test on all event selection cuts involved in the analysis
- Dependency on the zenithal angle
- Dependency over the years
- Dependency on atmospheric conditions

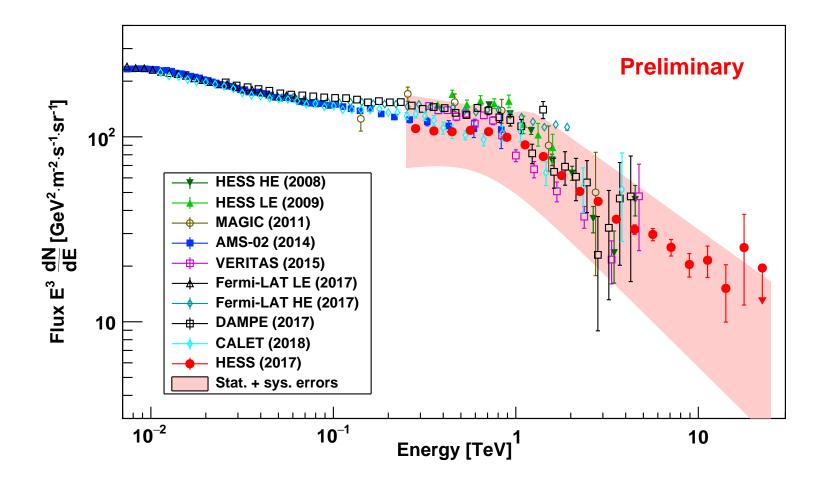
Total systematic errors: quadratic sum of each tests.

$$\begin{split} \Gamma_1 &= 3.04 \pm 0.01 \text{ (stat)} \stackrel{+0.10}{_{-0.18}} \text{ (sys)} \\ \Gamma_2 &= 3.78 \pm 0.02 \text{ (stat)} \stackrel{+0.17}{_{-0.06}} \text{ (sys)} \\ E_b &= 0.94 \pm 0.02 \text{ (stat)} \stackrel{+0.29}{_{-0.26}} \text{ (sys)} \text{ TeV} \\ N_0 &= 104 \pm 1 \text{ (stat)} \stackrel{+27}{_{-16}} \text{ (sys)} \text{ GeV}^2 \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \cdot \text{s}^{-1} \\ \alpha &= 0.12 \pm 0.01 \text{ (stat)} \stackrel{+0.19}{_{-0.05}} \text{ (sys)} \end{split}$$


Electron spectrum with systematic uncertanties

Daniel Kerszberg. The High-Energy End of the Cosmic-Ray Electron Spectrum - TeVPA 2018 - 30 August 2018.

Featureless spectrum up to the highest energies



Daniel Kerszberg. The High-Energy End of the Cosmic-Ray Electron Spectrum - TeVPA 2018 - 30 August 2018.

Summary

- Electron spectrum measured with standard analysis allowing excellent background rejection.
- Detection of 480 739 electron-like events from 250 GeV up to \sim 20 TeV.
- Electron spectrum fitted with a smooth broken power law:
 - low energy index $\Gamma_1 = 3.04 \pm 0.01$ (stat) $^{+0.10}_{-0.18}$ (sys)
 - high energy index $\Gamma_2 = 3.78 \pm 0.02$ (stat) $^{+0.17}_{-0.06}$ (sys)
 - break at E_b = 0.94 ± 0.02 (stat) ^{+0.29}_{-0.26} (sys) TeV
 - flux at 1 TeV $\Phi(1 \text{ TeV}) = 96 \pm 1$ (stat) ± 17 (sys) GeV².m⁻².sr⁻¹.s⁻¹
- No features is seen in the electron spectrum up to the highest energies which allow us to exclude models that describe prominent features from nearby sources such as Vela.
- Please refer to the forthcoming paper from the H.E.S.S. Collaboration!

Thank you for your attention!

Daniel Kerszberg . The High-Energy End of the Cosmic-Ray Electron Spectrum - TeVPA 2018 - 30 August 2018 .