# Learning the physics of CR transport from the gamma-ray sky



## **Daniele Gaggero**



# **Non-thermal emission from CRs**



Planck (2009-2013): GHz - THz radio sky

Non-thermal emission from CRs is crucial to understand their properties.

Observations cover > 20 orders of magnitude in energy, from ~100 MHz radio waves to PeV neutrinos

Future data will come from experiments such as

- SKA (radio domain, 50 MHz -> 14 GHz)
- e-ASTROGAM? AMEGO? (MeV γ-ray domain)
- CTA, HAWC (TeV γ-ray domain)
- LHAASO, HERD (TeV to PeV CRs and γ-rays)
- Icecube, Km3NET (neutrinos)
- Dampe, CALET, ISS-CREAM (TeV charged CRs)



Arrival directions of most energetic neutrino events (HESE 6yr (magenta) &  $v_{\mu} + \bar{v}_{\mu}$  8yr (red))

# The key questions

- 1) Where do CRs come from?
- 2) How do they propagate in (different region of) the Galaxy? What is the mechanism of confinement?

3) Can they reveal hints of new physics?



## **Phenomenology of CR transport**



Physical processes that affect CR transport in the Galaxy: [Ginzburg&Syrovatskii 1964; Berezinskii et al. 1990]

- Primary CR production
- Secondary CR production via spallation
- *Rigidity-dependent* diffusion
- Rigidity-independent advection
- Possibly, stochastic **II order Fermi** acceleration (*reacceleration*)
- Energy losses

$$\nabla \cdot (\vec{J_i} - \vec{v_w}N_i) + \frac{\partial}{\partial p} \left[ p^2 D_{pp} \frac{\partial}{\partial p} \left( \frac{N_i}{p^2} \right) \right] - \frac{\partial}{\partial p} \left[ \dot{p}N_i - \frac{p}{3} \left( \vec{\nabla} \cdot \vec{v_w} \right) N_i \right] =$$

$$Q + \sum_{i < j} \left( c\beta n_{\text{gas}} \sigma_{j \to i} + \frac{1}{\gamma \tau_{j \to i}} \right) N_j - \left( c\beta n_{\text{gas}} \sigma_i + \frac{1}{\gamma \tau_i} \right) N_i$$

$$J_i = -D_{ij} \nabla_j N$$

## The numerical (phenomenological) approach



$$\nabla \cdot \left(\vec{J_i} - \vec{v_w}N_i\right) + \frac{\partial}{\partial p} \left[ p^2 D_{pp} \frac{\partial}{\partial p} \left( \frac{N_i}{p^2} \right) \right] - \frac{\partial}{\partial p} \left[ \dot{p}N_i - \frac{p}{3} \left( \vec{\nabla} \cdot \vec{v_w} \right) N_i \right] = Q + \sum_{i < j} \left( c\beta n_{\text{gas}} \sigma_{j \to i} + \frac{1}{\gamma \tau_{j \to i}} \right) N_j - \left( c\beta n_{\text{gas}} \sigma_i + \frac{1}{\gamma \tau_i} \right) N_i$$

- Solve the CR transport equation for all the relevant species (heavy and light nuclei, leptons, antiparticles...)
- Compute the non-thermal emission over 20 orders of magnitude, from ~100 MHz radio waves (synchrotron emission) to GeV-TeV γ-rays and neutrinos [see R. Kissmann's, T. Porter's talks]

# The theory behind CR diffusion describing CR transp

tain a self-consistent

### Guideline: resonant pitch-angle scattering on Alfvénic turberence that at ener [Morrison 1957; Jokipii ApJ 146 1966; Jokipii&Parker PRL 21 1968] tion of CRs with wave leads to a spectral ha



- The ISM is magnetized and turbulent sovered wide inertial threat range; energy injection at large scales (set 000 pe); vergicitys. supernova explosions or other mechanisms calculation—V
- Pitch-angle scattering: a resonant interaction between Alfvén waves and charged CRs  $\partial z$   $\partial z$
- Whenever a CR interacts with an Alfvén preventities  ${}_{wift}$  the equipse of the equipse of the second tion is satisfied, changes randomly the pitch angle: This stochastic process eventually results in a mostly parallel spatial diffusion w.r.t. the regular field  $D_{kk}$ .



## The theory behind CR diffusion

### Guideline: resonant pitch-angle scattering on Alfvénic turbulence

[Morrison 1957; Jokipii ApJ 146 1966; Jokipii&Parker PRL 21 1968]



**Figure 7.** Lagrangian mixing of passive fields: fluctuations develop small scales across, but not along the exact field lines.

### The real picture is much more complicated:

- Non-linear effects at small scales. If CRs stream faster than the Alfvén speed, they can amplify waves (naturally of the correct shape for scattering) through the *resonant streaming instability* [Wentzel 1974; Skilling 1975; Cesarsky 1980; Farmer&Goldreich 2003]
- Pitch-angle scattering is not an efficient confinement mechanism if Alfvénic turbulence is anisotropic. [Chandran 2000, Yan&Lazarian 2002]

## Achievements in the CR field

## A new precision era in CR and gamma-ray physics 1990s -> 2010s





## However, we have anomalies!

... however, there are also **relevant anomalies** to be explained





## Anomalies with respect to what?

Basic theories are used as guidelines for standard parametrizations
Set of "conventional models" —> anomalies "w.r.t. orthodoxy"

The three pillars

- The bulk of the CR energy is released by SN explosions in the Galactic disk
- CRs are accelerated via diffusive shock acceleration at work at SNR shocks — Universal, featureless spectrum
- CRs diffuse within an extended, turbulent and magnetized halo in a homogeneous and isotropic way. Confinement time ~ few million years

# List of anomalies: Charged CRs

- **Spectral hardening** in primary and secondary species at ~200 GV
- Probably a transport effect.
- Different transport properties in the disk and in the halo? [Tomassetti 2015]
- Transition from self-generated to pre-existing turbulence?
   [Blasi, Amato, Serpico, PRL 2012; Aloisio, Blasi, Serpico 2015]

## Positron excess

- A population of leptonic accelerators (e.g. pulsars?)
   [Aharonian&Atoyan 1995; Hooper+ 2009, Grasso+ 2009; Yuan+ 2018]
- DM interpretation challenged by many constraints (e.g. CMB) [1502.01589]
- Anomalous transport properties? Change of paradigm in CR propagation? [P. Lipari arXiv:1707.02504]
- ☆ [review arXiv:1802.00636]
- Low- and high-energy electrons?
- Low- and high-energy antiprotons?





# List of anomalies: Gamma rays

- "GeV extended emission from the inner Galaxy"
- millisecond pulsars? [Lee+ 2016, Bartels+ 2016]
- molecular clouds? [De Boer+ 2017]
- *dark matter*? [Hooper&Goodenough 2011, Daylan+ PDU 2016, many others...]

[see D. Hooper, E. Storm's, T. Edwards talks]

## Fermi Bubbles

[see K. Yang's, L. Yang's, D. Malyshev's talks]

Progressive hardening in the proton spectrum towards the inner Galaxy

## Gradient problem

[Strong+ 2004, Evoli+ 2012]







# List of anomalies: Gamma rays

- "GeV extended emission from the inner Galaxy"
- millisecond pulsars? [Lee+ 2016, Bartels+ 2016]
- molecular clouds? [De Boer+ 2017]
- *dark matter*? [Hooper&Goodenough 2011, Daylan+ PDU 2016, many others...]

[see D. Hooper, E. Storm, T. Edwards talks]

## Fermi Bubbles

[see K. Yang's, L. Yang's, D. Malyshev's talks]

**Progressive hardening** in the proton spectrum towards the inner Galaxy

## Gradient problem

[Strong+ 2004, Evoli+ 2012]







# Spectral hardening from gamma-ray data

 A progressive CR hardening in the inner Galaxy inferred from gamma-ray data can be interpreted as a progressively harder scaling of the diffusion coefficient as first noticed in [Gaggero et al., PRD 2015, arXiv:1411.7623]

- Confirmed by the Fermi-LAT collaboration via a template-fitting procedure based on:
- Ring decomposition for the gas distribution
- ☆ Model for the IC emission,
- Catalogs of point and extended sources



Fig. 3.— Galactocentric annuli of  $N_{\rm H\ I}$  in  $10^{20}$  cm<sup>-2</sup> (left) and  $W(\rm CO)$  in K km s<sup>-1</sup> (right), displayed in Galactic plate carrée projection with bin size of 0°125 × 0°125. The square root color scaling saturates at  $100 \times 10^{20}$  cm<sup>-2</sup> for  $N_{\rm H\ I}$  and at 50 K km s<sup>-1</sup> for  $W(\rm CO)$ . The Galactocentric boundaries for each annulus are written in each panel.



# Spectral hardening from gamma-ray data

 A progressive CR hardening in the inner Galaxy inferred from gamma-ray data can be interpreted as a progressively harder scaling of the diffusion coefficient as first noticed in [Gaggero et al., PRD 2015, arXiv:1411.7623]

- Confirmed by the Fermi-LAT collaboration via a template-fitting procedure based on:
- Ring decomposition for the gas distribution
- ☆ Model for the IC emission,
- Catalogs of point and extended sources



Fig. 3.— Galactocentric annuli of  $N_{\rm H I}$  in  $10^{20}$  cm<sup>-2</sup> (left) and  $W(\rm CO)$  in K km s<sup>-1</sup> (right), displayed in Galactic plate carrée projection with bin size of 0°125 × 0°125. The square root color scaling saturates at  $100 \times 10^{20}$  cm<sup>-2</sup> for  $N_{\rm H I}$  and at 50 K km s<sup>-1</sup> for  $W(\rm CO)$ . The Galactocentric boundaries for each annulus are written in each panel.



# **Physical interpretations (I)**

Is this a potential signature of anisotropic CR transport?

$$D_{ij} \equiv D_{\perp} \delta_{ij} + (D_{\parallel} - D_{\perp}) b_i b_j, \qquad b_i \equiv$$

Improved modeling of large-scale topology of the Galactic magnetic field: poloidal component in the inner Galaxy Enhanced parallel escape in the vertical direction in the inner Galaxy

 $\frac{B_i}{|\mathbf{B}|}\,,$ 



# **Physical interpretations (I)**

## Is this a potential signature of anisotropic CR transport?

$$D_{ij} \equiv D_{\perp} \delta_{ij} + (D_{\parallel} - D_{\perp}) b_i b_j, \qquad b_i \equiv \frac{B_i}{|\mathbf{B}|}$$

Enhanced parallel escape in the vertical direction in the inner Galaxy



# **Physical interpretations (II)**

Alternative explanation for the progressive hardening based on CR self confinement

Growth-damping balance of selfgenerated magnetic turbulence

$$\frac{\partial}{\partial k} \left[ D_{kk} \frac{\partial W}{\partial k} \right] + \Gamma_{\rm CR} W = q_W(k).$$

$$\Gamma_{\rm cr}(k) = \frac{16\pi^2}{3} \frac{v_{\rm A}}{k W(k) B_0^2} \left[ p^4 v(p) \frac{\partial f}{\partial z} \right]_{p=qB_0}$$

$$D_{kk} = C_{\rm K} v_{\rm A} k^{7/2} W(k)^{1/2}$$

Stronger CR gradients -> more effective selfconfinement -> low diffusion coefficient -> advection takes over at larger energies -> propagated spectrum closer to the inj. one



# A new analysis with SkyFACT

- Adaptive template-fitting analysis
  - Spectral trend confirmed outside the Galactic bulge
- Unclear behavior at very low radii!

 $Model = \sum_{k} Spectrum \times Morphology$  Uncertain spectral modelling Pixel-by-pixel correlated uncertainties  $\phi_{pb} = \sum_{k} T_{p}^{(k)} \overline{\tau_{p}^{(k)}} \cdot S_{b}^{(k)} \overline{\sigma_{b}^{(k)}} \cdot \nu^{(k)}$   $In \mathcal{L} = In \mathcal{L}_{P} + In \mathcal{L}_{R}(\lambda, \lambda', \lambda'', \eta, \eta')$  Penalized Poisson likelihood with regularisation conditions

High-energy fits show same trend!



# A new analysis with SkyFACT

- Adaptive template-fitting analysis
- Spectral trend confirmed outside the Galactic bulge
- Unclear behavior at very low radii!



 High-energy fits show same trend!



# A new analysis with SkyFACT

- Adaptive template-fitting analysis
- Spectral trend confirmed outside the Galactic bulge
- Unclear behavior at very low radii!
- High-energy power-law fits show same trend!

3.0

2.8

2.6

2.4

2.2

0

5

Spectral index





[M. Pothast, **DG**, E. Storm, C. Weniger, arXiv:1807.04554]

## The role of unresolved sources

- Unresolved point sources could in principle mimic the spectra trend
- We set up a MC simulation based on the spectra and luminosity function of resolved sources. Strong uncertainties on the low-luminosity cutoff!
- Unresolved sources do not play a major role outside the Galactic bulge



### Unresolved sources do not play a major role outside the Galactic bulge



[M. Pothast, DG, E. Storm, C. Weniger, arXiv:1807.04554]

# Future prospects: The TeV sky

 "Hard CR sea" in the inner Galaxy explains TeV emission from the Galactic ridge?



- Looking forward to the diffuse TeV emission map from future experiments (HAWC, CTA)
- The presence of a spectral trend in the very high energy can reveal a lot of information about the physics



## Take-home message and outlook

- We are still far from fully understanding the physics of cosmic rays and their mechanisms of confinement
- We have great data, and a lot of anomalies to explain, both in the charged CR spectra and in the non-thermal emission
- Gamma-ray data can reveal CR spectral properties in different regions of the Galaxy. They can shed light on the physics of CR transport
- Looking forward to the TeV gamma-ray diffuse skymaps





# **Backup Slides**

## Phenomenology of CR sources

- 1) based on **DSA** at non-relativistic shocks (e.g. SNRs, superbubbles) [Blandford & Ostriker 1978; Bell 1978; Axford et al. 1977; Krymskii 1977]
- based on (transient or steady-state) accretion-powered relativistic jet acceleration (XRBs on the Galactic scale, GRBs and AGNs on larger scales)
- 3) based on other (leptonic) processes (PWNs)







Shock waves are ubiquitous: They are powerful heating machines and particle accelerators

## **Phenomenology of CR transport**



Physical processes that affect CR transport in the Galaxy: [Ginzburg&Syrovatskii 1964; Berezinskii et al. 1990]

- Primary CR production
- Secondary CR production via spallation
- *Rigidity-dependent* diffusion
- Rigidity-independent advection
- Possibly, stochastic **II order Fermi** acceleration (*reacceleration*)
- Energy losses

$$\nabla \cdot (\vec{J_i} - \vec{v_w} N_i) + \frac{\partial}{\partial p} \left[ p^2 D_{pp} \frac{\partial}{\partial p} \left( \frac{N_i}{p^2} \right) \right] - \frac{\partial}{\partial p} \left[ \dot{p} N_i - \frac{p}{3} \left( \vec{\nabla} \cdot \vec{v_w} \right) N_i \right] =$$

$$Q + \sum_{i < j} \left( c \beta n_{\text{gas}} \sigma_{j \to i} + \frac{1}{\gamma \tau_{j \to i}} \right) N_j - \left( c \beta n_{\text{gas}} \sigma_i + \frac{1}{\gamma \tau_i} \right) N_i$$

$$J_i = -D_{ij} \nabla_j N$$



# **The DRAGON project**





C. Evoli, **DG**, D. Grasso, L. Maccione, JCAP 2008 (DRAGON 1) **DG**, C. Evoli, *et al.*, **PRL** 2013 (DRAGON3D) C. Evoli, **DG**, *et al.*, J

C. Evoli, **DG**, *et al.*, 3



**DRAGON** implements fully-tested **2D and 3D** *inhomogeneous* isotropic diffusion, and **2D** *anisotropic* diffusion

- Possibility to study transients, moving sources, 3D structures
- Possibility to study different transport regimes in different regions of the Galaxy
- Possibility to account for both astrophysical and beyond-standard-model processes





### The mysterious high-energy positron excess and the pulsar hypothesis



— In conventional scenarios, positrons are secondary products of CR spallation on interstellar gas, and their spectrum is expected to be steeper than the electron one (in general, secondary-to-primary ratios are expected to decline with increasing rigidity)

A large excess in high-energy positrons detected by PAMELA and later AMS
A signature of a new class of sources at work?

### The mysterious high-energy positron excess and the pulsar hypothesis



A large excess in high-energy positrons
detected by PAMELA and later AMS
A signature of a new class of sources at work?

- We showed that **pulsars** are **plausible** candidates to explain this anomaly

- 1. Energy budget OK
- 2. spectrum is fitted to the data (-> provides info on acceleration mechanism)
- 3. Predictions for anisotropy
- 4. Numerical frameworks allow to show that all channels work consistently taking into account a comprehensive catalogue of pulsars

### The mysterious high-energy positron excess and the pulsar hypothesis



A large excess in high-energy positrons
detected by PAMELA and later AMS
A signature of a new class of sources at work?

- We showed that **pulsars** are **plausible** candidates to explain this anomaly

- 1. Energy budget OK
- 2. spectrum is fitted to the data (-> provides info on acceleration mechanism)
- 3. Predictions for anisotropy
- 4. Numerical frameworks allow to show that all channels work consistently taking into account a comprehensive catalogue of pulsars

### The mysterious high-energy positron excess and the pulsar hypothesis



- A large excess in high-energy positrons
  detected by PAMELA and later AMS
  A signature of a new class of sources at work?
- We showed that **pulsars** are **plausible** candidates to explain this anomaly
- 1. Energy budget OK
- 2. spectrum is fitted to the data (-> provides info on acceleration mechanism)
- 3. Predictions for anisotropy
- 4. Numerical frameworks allow to show that all channels work consistently taking into account a comprehensive catalogue of pulsars

## Alternative ideas?



### P. Lipari, ICRC 2017

### Conventional propagation scenario:

- A1. Very long lifetime for cosmic rays
- A2. Difference between electron and proton spectra shaped by propagation effects
- A3. New hard source of positrons is required
- A4. Secondary nuclei generated in interstellar space

#### Alternative propagation scenario:

- B1. Short lifetime for cosmic rays
- B2. Difference between electron and proton spectra generated in the accelerators
- B3. antiprotons and positrons of secondary origin
- B4. Most secondary nuclei generated in/close to accelerators

## The high-energy hardening in local CR data



## The high-energy hardening in local CR data

### A source effect?

- A new population of sources kicking in?
  - [Zatsepin&Sokolskaya 2008, pre-AMS]
- Possible role of superbubbles? [Ohira et al., PRD 2016; Parizot et al., A&A 2004, pre-AMS]
- Non-linear DSA? [Ptuskin et al., ApJ 2013]
- The fingerprint of a local supernova event? [Kachelriess et al., PRL 2015; Tomassetti&Donato ApJ 2015; Tomassetti ApJL 2015]

### A transport effect?

**Different transport properties** in the disk w.r.t. the halo? [Tomassetti, PRD 2015]

- A possible transition between different transport regimes?
  - *low energies*: propagation in self-generated (via streaming instability) turbulence
  - *high energies*: propagation in pre-exisiting turbulence [Farmer&Goldreich 2004; Blasi, Amato, Serpico, PRL 2012; Aloisio, Blasi, Serpico 2015]



- How can we tell the difference? secondary spectra and secondary/primary ratios such as B/C are crucial observables [Genolini et al., 2017]
- source effects: secondaries inherit the primary feature: *B/C should be featureless* (secondaries originate from spallation, which preserve E/A; E/A is proportional to the rigidity)
- transport effect: secondaries inherit the primary feature and get a further hardening due to propagation. *B/C should show a break; break in Li, Be, B is more pronounced*





FIG. 2: Best fits and residuals with (blue) and without (red) the break using GALPROP cross sections and  $\sigma_{tot}$ , for the different models considered in the text.

### "Hard diffusion" in the inner Galaxy explains it all?



## This implies a non-negligible Galactic component in IceCube data A testable prediction with KM3Net

Joint IceCube+ANTARES analysis is ongoing



### IceCube collaboration

Arrival directions of most energetic neutrino events (HESE 6yr (magenta) &  $v_{\mu} + \overline{v}_{\mu}$  8yr (red))





## A glimpse on the gradient and anisotropy problem

The gradient problem and anisotropic, inhomogeneous diffusion



γ-rays —> proton flux across the
 Galaxy is much flatter than what predicted
 under conventional assumptions

 We solved this long-standing puzzle together with the well-known *anisotropy problem* by implementing **enhanced perpendicular escape** along the vertical direction in regions with more CR sources

another evidence inferred from gamma-ray data of inhomogeneous diffusion across the Galaxy?

C. Evoli, DG, D. Grasso et al., PRL 2013

## A glimpse on the gradient and anisotropy problem

The gradient problem and anisotropic, inhomogeneous diffusion



– γ-rays –> proton flux across the
 Galaxy is much flatter than what predicted
 under conventional assumptions

We solved this long-standing puzzle
 together with the well-known *anisotropy problem* by implementing **enhanced perpendicular escape** along the vertical
 direction in regions with more CR sources

another evidence inferred from gamma-ray data of inhomogeneous diffusion across the Galaxy?

Evoli, DG, D. Grasso et al., PRL 2013