TeVPA 2018, Berlin

JCAP 1707 (2017) no.07, 027 & WIP

AB, A. Esmaili, S. Palomares-Ruiz, and I. Sarcevic

Probing for signs of neutrinos from heavy dark matter decay in the IceCube signal

Atri Bhattacharya, University of Liège

IceCube signals and power-laws

6-yr HESE data

- Interaction vertex in instrumented detector volume
- 80 events
- 60 TeV 2.1 PeV
- Suggests steeply falling flux: $\gamma \approx 2.9$ (7.5-yr data)

 $\frac{d\Phi}{dE_{\nu}} \propto E_{\nu}^{-\gamma}$

Talks at TeVPA 2018: Wood, Ahlers, Murase, Schneider...

IceCube signals and power-laws

6-yr HESE data

- Interaction vertex in instrumented detector volume
- 80 events
- 60 TeV 2.1 PeV
- Suggests steeply falling flux: $\gamma \approx 2.9$ (7.5-yr data)

6-yr through-going μ

- μ -track from v_{μ} CC interaction outside detector volume
- 200 TeV+ deposited energy
- Suggests $\gamma \approx 2.1$

Talks at TeVPA 2018: Wood, Ahlers, Murase, Schneider...

Low energy excess?

Chianese, et al, arXiv:1707.05241

Adding DM: Expectations

Naturally explain dissonance between HESE and µ-tracks

Avoid overshooting TeV-scale y-ray observations

y-ray constraints

MAGIC coll, arXiv:1806.11063; Fermi-LAT coll, Astrophys. J. 761:91, 2012

Adding DM: expectations

- Naturally explain dissonance between HESE and µ-tracks
- Avoid overshooting TeV-scale y-ray observations
- Lack of events at Glashow resonance
 Confirmation from other indirect searches.

Decaying Dark Matter: Theory

- Decaying DM with $m_{\rm DM} \sim 200 \,{\rm TeV}+$
- Decays necessarily have to be slow
 - Explain relic abundance ($\tau > 10^{18}$ sec)
 - Avoid y-ray constraints ($\tau \sim 10^{25}$ sec+)
 - Possibly stabilised through global symmetries in a hidden sector broken at the GUT scale or higher

Analysis: Decaying Dark Matter

- Consider simple 2-body decays assuming scalar parent DM
- Identical final state particles
 - All possible SM particle pairs
 - Also look at scenarios where DM may decay via multiple channels
- Use PYTHIA to generate flux spectrum

Analysis: Decaying Dark Matter

Analysis: Astrophysical flux

• Model as simple power-law

$$\frac{d\Phi_{\text{astro},\nu_{\alpha}}}{dE_{\nu}} = \phi_{\text{astro}} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma}$$

- Shock accⁿ theory suggests hard spectrum $\gamma \approx 2$
- μ -track events suggest $\gamma \approx 2.1$
- HESE best-fit suggests $\gamma \approx 2.9$ (with 7.5 yrs of data)

Analysis: Fluxes and Events

 $\frac{d\Phi^c}{dE_{\nu}}(E_{\nu};\tau_{\rm DM},m_{\rm DM},\phi_{\rm astro},\gamma) = \frac{d\Phi^c_{\rm DM}}{dE_{\nu}}(E_{\nu};\tau_{\rm DM},m_{\rm DM}) + \frac{d\Phi_{\rm astro}}{dE_{\nu}}(E_{\nu};\phi_{\rm astro},\gamma)$

- Use IC published effective areas for event rates
- Use IC best-fit atm. conventional background v and μ
- Distinguish between event topologies:
 - Tracks and cascades
 - Upgoing and downgoing
- Account for flavour in DM decay flux
- Unbinned maximum likelihood analysis over 4 independent parameters

Results

 $\mathrm{DM} \to W^+ W^-$

 $\mathrm{DM} \to \nu_e \, \bar{\nu}_e$

Results

DM soft-spectrum channels

- Allow flat astro, reduced normalisation
- Secondary v from DM decay "fills-in" between 60 – 200 TeV
- mDM: 400 TeV—1.7 PeV

Gauge bosons

 $(u\bar{u})$

DM hard-spectrum channels

- PeV+ events: Primary + secondary v from DM decay
- Sub-PeV events almost entirely from astrophysical flux with $\gamma > 3$

Results

Decay channel	$ au_{\rm DM} [10^{28} \ { m s}](N_{\rm DM})$	$m_{\rm DM} \ [{\rm PeV}]$	$\phi_{ m astro}(N_{ m astro})$	γ
$uar{u}$	0.11 (28.4)	1.761	$0.52\ (13.0)$	2.34
$b\overline{b}$	0.07 (26.9)	1.103	0.58(14.3)	2.35
$tar{t}$	$0.11 \ (28.7)$	0.598	0.45~(12.5)	2.27
W^+W^-	0.37~(28.5)	0.412	$0.46\ (12.6)$	2.29
ZZ	$0.43\ (27.8)$	0.407	$0.52\ (13.3)$	2.32
hh	0.12~(28.8)	0.611	0.45~(12.6)	2.27
e^+e^-	2.20(4.0)	4.160	$3.53\ (37.3)$	3.36
$\mu^+\mu^-$	9.77~(~4.9)	6.583	$3.51 \ (36.5)$	3.39
$ au^+ au^-$	0.89~(27.4)	0.472	$0.59\ (14.3)$	2.36
$ u_e \overline{ u}_e$	4.12(3.6)	4.062	3.52 (37.7)	3.33
$ u_{\mu} ar{ u}_{\mu}$	4.63(5.0)	4.196	3.52(36.4)	3.41
$ u_{ au}ar{ u}_{ au}$	$0.96\ (16.6)$	0.341	1.58(24.9)	2.74

Decays via multiple channels

- Combination of hard and soft spectrum, both from DM decay
- Assume astrophysical flux to be negligible
- $m_{\rm DM} \approx 4$ PeV to explain PeV+ events
 - Hard decay (leptons, neutrinos) explain PeV+ events
 - Soft decay explains sub-PeV events
 - Fit parameters: m_{DM} , τ_{DM} , and branching ratio BR

 $BR = \Gamma_{DM \to p_1 \bar{p}_1} / \left(\Gamma_{DM \to p_1 \bar{p}_1} + \Gamma_{DM \to p_2 \bar{p}_2} \right)$

Decays via multiple channels

Best-fits for combination of lightest quarks and neutrinos/leptons

Rounding off: Checklist

- ✓ *Naturally* explain dissonance between HESE and μ -tracks
- Avoid overshooting TeV-scale y-ray observations
- ✓ Lack of events at Glashow resonance
- Confirmation from other indirect searches.

Conclusions

- Recent IceCube diffuse neutrino results offer a peek into the UHE universe through the prism of neutrinos
- Extremely soft power-law fit to HESE data suggest the presence of interesting physics at 60–200 TeV
 - Could be astrophysical: hidden sources, choked jets
 - Could be heavy DM decay signatures

Backup Slides

y-ray constraints

Backgrounds from atm. v

- Conventional flux steeply dropping
- By ~100 TeV prompt dominates, but not significant
- Look at models of diffractive forward charm production
 - Result: No big change

Two-parameter correlations

IceCube vs Fermi

Ahlers, talk on Tuesday