Searching for Optical Counterparts to High-Energy Neutrino Sources with the Zwicky Transient Facility

Ludwig Rauch TeVPA 2018 Berlin, 29.08.2018

HELMHOLTZ Young Investigators

The Idea in Short

Combine two northern sky surveys in realtime

Neutrino Source Candidates

Expected Time Scales of Transients

Tidal disruption events ~1d - 100d

Supernovae

~100d

~1h - 10d Active galactic nuclei

Gramma ray bursts

~10s -100s

200

SŞ, S

50

Current / Future Optical Surveys

ZTF can scan the entire Northern sky every night to 20.5 mag

ZTF Spectroscopically-Accessible Transients

ZTF provides:

- Unprecedented catalogue of transients up to ~20.5mag
- Complete set of lightcurves
 for source identification
- All-sky coverage (3π in 8h)
- Cadence approx. 3 days
- On site spectrograph (SEDmachine)
- Additional spectroscopic
 time available on other
 telescopes

DESY.

Spectroscopically-accessible

Target of Opportunity

- Follow-up of high-energy neutrinos (TeV, PeV) for early time information of transient
- Track events: (~1 deg, ~10/ year)
 - ~1 pointing of ZTF covers the neutrino error circle
- Public high-cadence data increases information about the late-time evolution of the lightcurve
- Spectroscopic typing of all selected transients possible

Search for Low-Energy Neutrino Sources ?

7

DESY.

Real-time Neutrino Correlation with IceCube

Alert Management,

Observed Wavelength [8

Real-time Neutrino Correlation: Primary Transient Selection

Short transients (GRB-like)

- More than 2 detections in < 12h
- Falling lightcurve
- Realtime maximum likelihood calculation
 of test statistic

Medium length transients (SN lc, Kilonova)

- Time window of 2 weeks
- More than 3 optical detections

Long transients (SN IIn, SLSN, TDE, AGN)

- Time window of 8 weeks
- More than 5 optical detections

Real-time Neutrino Correlation: Search for Counterparts

- Trained neural network estimates redshift
 of host galaxy
- Neutrino counterparts (signal) show generally smaller redshifts

 → Enables rejection of transients showing no significant neutrino emission (background)

Spectroscopic follow-up

- Real-time maximum likelihood calculation
- Statistical excess between neutrino and optical counterpart will trigger spectroscopic follow-up
- Optimised on false positive rate of < 100 triggered spectra per year.

Real-time Neutrino Correlation: Goal

Offline Stacking Analysis

- ZTF transient catalogue:
 - <u>Complete (magnitude-</u> <u>limited) catalogue</u>
 - Fast-fading transients can be detected
 - Well-sampled lightcurves
 - Spectroscopical classification available
- IceCube neutrino sky map
 - Large statistics of highenergy neutrino events

ZTF transient catalogue

\mathcal{F}

IceCube neutrino sky map

Current Status: Commissioning

Current status:

Summary

ZTF transient catalogues and ToO program allows for improved and novel analyses

Target of Opportunity

- Low rate of high-energy neutrinos
- High cadence of ZTF (3 days) allows to search for fast fading transients
- Spectroscopic classification available
- Large field of view to consider full error circles

Stacking Analysis

- High rate of low-energy neutrinos
- Complete and magnitude limited transient catalogue

HELMHOLTZ Young Investigators