

VHE gamma-ray observations of TXS 0506+056

Konstancja Satalecka (DESY), TeVPA 2018

TXS 0506+056 — an ordinary blazar?

TXS 0506+056 – an ordinary blazar?

Typical blazar of BL Lac type, z= 0.34 (Paiano et al., 2018)

Chance coincidence: ~3 sigma (space + flux enhancement)

Can neutrinos be produced efficiently by BL Lac objects?

TXS 0506+056 — an ordinary blazar?

Typical blazar of BL Lac type, z= 0.34 (Paiano et al., 2018)

Chance coincidence: ~3 sigma (space + flux enhancement)

Can neutrinos be produced efficiently by BL Lac objects?

Imaging Atmospheric Cherenkov Telescopes

- Use Cherenkov radiation emitted in extended atmospheric showers to identify the initial particle: gamma ray or cosmic ray
- Sensitive to gamma rays 50 GeV-50 TeV
- Collection area $O(10^5)$ m², angular resolution ~0.1 deg, FoV ~3.5-5 deg (pointing)
- > 200 sources discovered in VHE gamma rays: SNR, PWN, pulsars, binaries, AGN, starburst galaxies....
- Others science topics: GRBs, FRBs, dark matter, LIV, CR spectrum....

Imaging Atmospheric Cherenkov Telescopes

• Use Cherenkov radiation emitted in extended atmospheric showers to identify the initial particle: gamma ray or cosmic ray

Gamma-ray highlights - plenary talks on Wednesday + dedicated parallel sessions + many, many posters!

- > 200 sources discovered in VHE gamma rays: SNR, PWN, pulsars, binaries, AGN, starburst galaxies....
- Others science topics: GRBs, FRBs, dark matter, LIV, CR spectrum....

IACT neutrino events follow-up

- NToO program developed since 2007 → Gamma-ray follow-up (GFU) since 2012, IC+MAGIC+VERITAS, focus: V multiplets from AGN (M.G.Aartsen et al., JINST, II, PI1009,2016)
- Archival HESE/EHE directions (M. Santander et al., ICRC 2017)
- Real-time HESE/EHE follow-up since 2016
 - > 100 h IACT time invested in nu follow-up!

IC-170922A follow-up

- H.E.S.S: fastest follow-up (~4 h delay), total 3.25 h/ 3 nights → no detection> 175 GeV
- VERITAS: first obs. ~12 h delay, total 5.5 h/3 nights → no detection > 175 GeV
- MAGIC: first obs. ~32 h delay (Sep 24th), 3.5h, weather non-optimal
 - → Ih used for UL

Sep 28th - Oct 4th: I3h collected/I week → **detection > 90 GeV!** (Oct 3rd:ATel#I08J7)

First MultiMessenger spectrum!

VERITAS: 35 h collected between Sep 23rd – Feb 6th → detection > 100 GeV

Further observations: spectrum

- MAGIC: 2 flares + lower state, but no spectral index variability measured
- MAGIC+VERITAS: simple PL, index much softer than Fermi-LAT (~ 4.0)
 - → clear spectral curvature, apart from EBL effect: internal absorption, primary particle spectral break, production inefficiency...?

Interpretation: jet-sheath model

- Jet-sheath model (Ghisellini G., Tavecchio F., Chiaberge M., 2005, A&A, 432, 401)
- Components: leptonic (synchrotron, SSC, EC) + hadronic (photo-meson cascade, BH cascade, synch. rad. from pions and muons)
- Day-scale variability → Size of emitting region ~10¹⁶ cm
- Internal absorption: $\tau_{\gamma\gamma}(E_{\gamma}\sim 100~GeV)\sim 1$ consistent with the observed spectral break

The MAGIC Collaboration,

ApJL 863, I, arXiv:1807.04300

Interpretation: CR accelerator

- X-ray and VHE gamma-ray data set tight constraints on max. proton energy E_{p,max}
- Scan of $E_{p,max}$: 10¹⁴-10¹⁸ eV (co-moving frame)
 - → TXS 0506+056 able to accelerate CR to UHE!

Interpretation: CR accelerator

ApJL 863, 1, arXiv:1807.04300

The MAGIC Collaboration,

- X-ray and VHE gamma-ray data set tight constraints on max. proton energy E_{p,max}
- Scan of E_{p,max} More on interpretation:
 - → TXS 0506+056 able to accelerate CR to UHE!

Future: CTA

- Next IACT generation: Cherenkov Telescope Array
- North + South arrays with ~few10s IACTs each
- Larger energy range, sensitivity x 10 current instruments, fast reaction to alerts:
 - New source populations, also potential nu emitters (e.g. GRBs, distant AGN, etc)
 - Precise spectral measurements: distinction between leptonic/hadronic features
 - Precise time evolution of flux and spectrum → invaluable input for models
- Neutrino event follow up Key Science Program! (see talk by F. Schussler Mon @17:40)
- First telescopes on site ~2020

Future: CTA + IC-Gen2 + KM3Net

KM3Net: Multi-km3 size V telescope in Mediterranean Sea

- ORCA: neutrino oscillations
- ARCA: TeV PeV astrophysical neutrinos (Galactic Center!)
 - First strings deployed successfully in 2017
 - Completion ~2022 (see talk by P. Migliozzi Wed@ I 4:00)

CTA: new generation IACT array

- Neutrino follow-up Key Science Program
- First telescopes on site ~2020 (see talk by F. Schussler Mon @ 17:40)

IC-Gen2: wide-band (MeV-EeV) neutrino observatory

- Mixed technique: radio, Cherenkov radiation, surface detectors
- Deployment start ~2025 (see talk by S. Blot, Mon@16:15)

Summary

- First time observation of VHE γ-rays in coincidence with a high energy neutrino
- Further monitoring of TXS 0506+056 with the MAGIC & VERITAS telescopes
 - VHE gamma-ray flux variable at timescale ~I day, MAGIC reveals two flares and a lower state
 - Soft spectrum with index ~4.0 + Fermi/LAT data → break due to internal absorption
- First time full MultiMessenger spectral energy distribution available for interpretation:
 - Jet-sheath model reproduces the MWL SED & neutrino rates
 - $^-$ X-ray & γ -ray data constrain the maximum CR energies to 10^{14} 10^{18} eV
 - → first CR emitter?!