

LATEST RESULTS ON DARK MATTER SEARCHES USING THE H.E.S.S. TELESCOPES

30 August 2018

Vincent Poireau, on behalf of the H.E.S.S. collaboration CNRS, LAPP Annecy

- The H.E.S.S. experiment
- Indirect search for dark matter (DM)
- Three H.E.S.S. analyses presented
 - Search for gamma ray line signals in the inner galactic halo
 - Search for gamma ray line signals in dwarf galaxies
 - Electron spectrum

The H.E.S.S. telescopes

- Located in Namibia, at 1800 m elevation
 - **Phase I**: 4 × 12 m telescopes since 2003 (used in these analyses)
 - Phase II: 28 m telescope added in 2012
 - Field of view: 5°
 - Energy **threshold**: ~ 30 GeV
 - Angular **resolution**: ~ 0.1°

• Stereoscopic reconstruction using the Cherenkov light

Indirect detection

- DM particles (WIMPs) annihilate together and produce Standard Model particles
 - Positrons, electrons, gamma rays, ...

- Gamma rays not deflected by galactic magnetic field
 - Used to **locate** the source direction

Indirect detection

$$\left(\Phi_{\gamma}(E_{\max}, E_{\min})\right) = \left(\int_{E_{\min}}^{E_{\max}} \frac{1}{2} \frac{\langle \sigma v \rangle}{4\pi m_{\chi}^2} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} dE_{\gamma}\right) \left(\int_{\Delta\Omega(\alpha, \phi)} d\Omega \int_{\log} ds \ \rho_{\rm DM}^{2}(r(s, \alpha_{\rm int}))\right)$$

 $\gamma \text{ Flux}$

- Particle physics factor
 - Depends on the **WIMP mass**, on the **annihilation cross section**, on the **branching fractions**
 - Either continuum
 - Spectrum up to the WIMP mass
 - Non trivial to distinguish from other standard emission
 - Or monoenergetic line
 - Direct annihilation in photon(s): $\chi \chi \rightarrow \gamma X$, $X = \gamma$, h, Z
 - Suppressed, but prominent and narrow signal
- Astrophysical J factor
 - **DM density** profile to be assumed
 - Find places with high DM density

Where to look?

• Galactic center

- Contains a lot of DM
- Presence of astrophysical sources
 - TeV diffuse emission, supernovae, pulsars, Sgr A*

• Dwarf spheroidal galaxies

- **Satellites** of the Milky Way (20 300 kpc)
- Low luminous mass
- Most dominated DM objects
 - Ratio mass/luminosity: 10 1000
- No expected gamma ray background
 - No active sources, no gas, no star formation

Search for gamma ray line signals in the inner galactic halo

Phys. Rev. Lett. 120, 201101 (2018)

Galactic center

- 10 years of data (2004-2014), 254 h
- Search for a monoenergetic spectral line (300 GeV 70 TeV)
 - 10% energy resolution for H.E.S.S.
- Observation
 - **ON regions**: circle of 1° radius around galactic center, split in 7 sub-regions of width 0.1°
 - **Excluded regions**: galactic plane and HESS J1745-303
 - **OFF regions**: symmetric to the ON regions with respect to the observational pointing position
 - ON and OFF:
 - Same acceptance and observation conditions
 - Same shape and solid angle

Likelihood analysis

- 2D binned Poisson maximum likelihood analysis
 - Exploit spatial and spectral informations

$$\mathcal{L}_{ij}(\mathbf{N}_{\rm ON}, \mathbf{N}_{\rm OFF}, \alpha | \mathbf{N}_{\rm S}, \mathbf{N}_{\rm S}', \mathbf{N}_{\rm B}) = \frac{(N_{\rm S, ij} + N_{\rm B, ij})^{N_{\rm ON, ij}}}{N_{\rm ON, ij}!} e^{-(N_{\rm S, ij} + N_{\rm B, ij})}$$
ON term

$$\times \frac{(N'_{\rm S,ij} + \alpha_i N_{\rm B,ij})^{N_{\rm OFF,ij}}}{N_{\rm OFF,ij}!} e^{-(N'_{\rm S,ij} + \alpha_i N_{\rm B,ij})} \quad \text{OFF term}$$

i: **spatial** bin, j: **energy** bin

 $\alpha_i = 1$ (same ON and OFF region size)

N_B: expected background in the ON region

 N_{S} and $N^{'}_{\text{ S}}$: expected signal in the ON and OFF regions

- No statistically significant excess seen in any of the regions
- 95% CL upper limits derived from the likelihood ratio test

Upper limits

- 95% CL limit for the mass range 300 GeV–70 TeV
 - Reach 4×10⁻²⁸ cm³.s⁻¹ at 1 TeV
 - Improvement factor of **6** wrt previous limits at 1 TeV!
- Comparison
 - Einasto/NFW profiles + Fermi/MAGIC
 - Complementarity between H.E.S.S. and Fermi

Search for gamma ray line signals in dwarf galaxies

arXiv:1708.04858, publication in preparation

Dwarf galaxies

• Five dwarf galaxies analysed

Galaxy	Distance (kpc)	J factor (log ₁₀ (GeV ² .cm ⁻⁵))	Observation time (h)
Fornax	140	17.72 ± 0.18	6.0
Coma Berenices	44	19.52 ± 0.37	10.9
Sculptor	79	18.36 ± 0.12	11.8
Carina	101	17.86 ± 0.10	22.9
Sagittarius	25	18.34 ± 0.30	85.5

- Using 2D likelihood functions binned in energy and spatial coordinates
- Fornax, Sculptor, Carina, Sagittarius
 - **Two** spatial regions
- Coma Berenices
 - Three spatial regions

0.0°

Upper limits

- No excess found in the signal extraction
- Using likelihood ratio test statistics to set upper limits
- Uncertainties on the J factor taken into account
- Upper limits at 95% CL for DM annihilation into monoenergetic gamma rays
 - For each **dwarf galaxies**
 - For the **combination**

Pure WIMP models

- Pure WIMP model (minimal DM models)
 - Minimal amount of new physics to explain the DM problem
 - New multiplet of particles χ where the neutral component constitutes the DM
- Two specific candidates
 - Fermionic **triplet** $\chi \equiv (\chi^+, \chi^0, \chi^-)$
 - Fermionic quintuplet $\chi \equiv (\chi^{++}, \chi^+, \chi^0, \chi^-, \chi^{--})$
- χ^0 decays to
 - WW (tree), ZZ (loop): produce continuum γ spectrum
 - $\gamma\gamma$, γZ (loop): produce γ line
- Pure WIMP models feature
 - A prominent line $E_{\gamma} \approx M_{DM} + a$ continuum shoulder at $E_{\gamma} < M_{DM}$
 - Sommerfeld enhancement for loop processes
- Upper limits set constraints on the cross section

Electron spectrum

Publication in preparation

More details during the cosmic ray session today (Daniel Kerszberg)

Electron spectrum

- Propagation of electrons/positrons limited to ~1 kpc
 - A nearby source (such as DM) could dominate the high energy part of the spectrum

Preliminary

10

- Electron + positron spectrum measured up to 20 TeV
 - ~1200 h of observation
 - Exclusion of any known gamma source
 - Away from the galactic plane
 - Electron/proton separation from the shower shape

Other H.E.S.S. results

• H.E.S.S. showed also upper limits with a continuum spectrum in the recent past

- Galactic center
 - 254 h
 - PRL 117, 111301 (2016)

10

m_γ (TeV)

- Dwarf galaxies
 - 140 h, 5 dwarf galaxies
 - PRD 90, 112012 (2014)

Conclusions

- Recent results from H.E.S.S concerning DM search
 - Gamma ray line signals in the inner galactic halo
 - Gamma ray line signals in dwarf galaxies
 - Electron spectrum
- No excess seen, but the search goes on...
- Recent H.E.S.S. observation
 - More time toward **the galactic center**
 - More dwarf galaxies: **ultrafaint galaxies**
- Stay tune for more results on DM in the near future!

Additional slides

Pure WIMP models

Electron spectrum

The Model Analysis:

- Log-likelihood comparison between recorded images and pre-calculated templates including Night Sky Background
- Widely used for H.E.S.S. analysis
- Very powerful discrimination based on goodness of fit

