

The Fermi bubble study with future gamma-ray experiments

Lili Yang
University of Nova Gorica
University of Johannesburg - Centre for Astro-Particle Physics

with Soebur Razzaque (University of Johannesburg - CAPP)

Fermi Bubbles

- Huge gamma-ray emitting globular-shaped objects, D=9kpc
- 0.5 500 GeV γ rays
- uniform injected intensity
- coincident emission at multi-wavelength, X-ray, Microwave, radio
- Total gamma-ray
 luminosity ~ 4.4 x 10³⁷
 ergs/s

Credit: NASA Goddard Space Flight Center

Leptonic or Hadronic origin?

Both mechanisms can explain the measured spectrum

 Leptonic model: Compton scattering of relativistic electrons from shocks in the outflow of the GC on photons

 Hadronic model: collision of accelerated protons on background protons in the bubble gas

pp
$$\rightarrow \pi^0$$
, $\pi^{+/-}$

Hadronic Model

- Primary proton spectrum $dN_p/dE \propto N_0E^{-k} Exp(-E/E_0)$
 - Motivated by cosmicray acceleration in SNRs, E₀ ~0.03- 30 PeV, k~ 2.1 - 2.3
- The average density of bubble interiors ~ 10⁻² cm⁻³

Recent HAWC constraints

- 290 days data, E>1.2 TeV
- Northern Fermi bubble, b>6°
- Obtained upper limits constrain hadronic models

HAWC Collab. Abeysekara+2017

Updated Fermi-LAT analysis

- The spectrum is uniform above lbl=10°
- Low-latitude region, non-uniform intensity, and become increasingly brighter near the Galactic plane

- Between 100 MeV and 100 GeV, low- and high- |b| FB spectra are similar
- Above 100 GeV, low |b| spectrum remain hard, high-|b| with a cutoff

Fermi-LAT Collab. Ackermann + 2017

Updated IceCube v

Updated IceCube 6-year HESE dataset above 60 TeV

IC neutrino events: 8 strongly- and 6 weakly-correlated with the FB

- 1. k=2.0, E₀=1.6 TeV
- 2. k=2.15, E₀=30 TeV
- 3. k=2.2, $E_0=3 \text{ PeV}$

HAWC upper limits agree with Fermi-LAT observation high-latitude region

Razzaque & Yang 2018

Constrains with future gamma ray observatory

Large High Altitude Air Shower Observatory

LHAASO Collab.

Cherenkov Telescope Array (CTA)

CTA Collab. Acharya + 2017

CTA survey strategy

- Utilize planned CTA surveys covering FB low-latitude region
- First estimate of sensitivity to the Fermi Bubbles with CTA

- 525 hr centered on the GC with 9 pointing (0, +/-1 deg in l and b)
- 300 hr on North Galactic plane with 15 pointing (0, +/- 2 deg in l and 2-10 deg in b
- Each pointing has a radius of 3 degree

CTA sensitivity estimation

One dataset for the Southern Array

- ctools (v1.5.0) prod 2, South_50h
- Selected region of interest: +/- 2.5 deg in l and +/- 2.5 deg in b
- 0.5 deg pixel (10 x 10 pixels) and 20 energy bins in 30 GeV 100 TeV

Binned Poisson likelihood function

$$\mathcal{L}_i = \prod_j \frac{m_{ij}^{n_{ij}} e^{-m_{ij}}}{n_{ij}!}$$

Construct Asimov data sets from FB flux models - no statistical fluctuations

$$m_{ij} = \beta_{i,1}b_{ij,CR} + \beta_{i,2}b_{ij,GDE} + \mu_i s_{ij,FB}$$

Model data including signal (FB) and backgrounds (CR and GDE)

CTA sensitivity estimation

Profile likelihood ratio

$$-2ln\lambda_i=2.71$$
 \longrightarrow μ_i for each energy bin at 95% CL

Sensitivity for each energy bin at 95% CL

$$\mu_i \times E_{0,i}^2 \times \phi(E_{0,i})$$

E_{0,i} is the logarithmic mean energy of *i*th energy bin
φ is the FB flux

Cowan, Cranmer, Gross & Vitells 2011

Morphological analysis results

- CTA will have good sensitivity to both the high- and lowcutoff models of the FB flux at low |b| above I TeV
- 3% systematic error assumes the nuisance parameters are Gaussian distributed with standard deviation = 0.03

ON/OFF analysis

Calculate significance in each pixel to select ON/OFF regions (high-cutoff model for low |b|) $\sigma = \operatorname{sqrt}(2^*(n_{ij}*\ln(1+s_{ij}/b_{ij})-s_{ij}))$

- 15 energy bins consisting on regions for the high-cutoff models
- 8 energy bins consisting on regions for the low-cutoff models

$$m_{\rm on} = \beta_1 b_{\rm CR} + \beta_2 b_{\rm GDE} + \mu s_{\rm FB}$$

 $m_{\rm off} = \tau (\beta_1 b_{\rm CR} + \beta_2 b_{\rm GDE})$
 $\tau = b_{\rm off}/b_{\rm on}$

on: $\sigma > 2$ off: $\sigma < 0.1$

Ratio of the background in on and off region

ON/OFF analysis

Likelihood function

$$\mathcal{L} = \frac{m_{\text{on}}(\mu, \beta_1, \beta_2)^{n_{\text{on}}}}{n_{\text{on}}!} e^{-m_{\text{on}}(\mu, \beta_1, \beta_2)} \frac{m_{\text{off}}(\beta_1, \beta_2, \tau)^{n_{\text{off}}}}{n_{\text{off}}!} e^{-m_{\text{off}}(\beta_1, \beta_2, \tau)}$$

Cousins, Linnemann & Tucker 2008

CTA sensitivity (95% CL) to the FB from ON/OFF analysis (high- and low-cutoff models for low |b|)

LHAASO project

Large High Altitude Air Shower Observatory

- Haizi Mountain in Sichuan at altitude of 4410 meter
- Hybrid detector -
 - Water Cherenkov
 - Air fluorescence
 - Plastic scintillators

Water Cherenkov Detector Array(WCDA)

- Energy range of (100 GeV, 100 TeV)
- Gamma effective area up to 10⁶ m²
- Four zenith bands
- Overall systematic uncertainty, 10% 50%

LHAASO field of view of bubble

Northern bubble can be seen in the zenith angle of (15,30), (30,45) and (45,60) degree with a daily average solid angle of 0.0003, 0.026 and 0.07 sr

LHAASO sensitivity estimation

Sensitivity at 95% CL for 30-day exposure (high- and low-cutoff model for low |b|) without and with 10% systematic uncertainty

Summary

- The origin of the Fermi bubbles and emission mechanism of gamma rays are still unknown
- With the latest observation of gamma ray and neutrino data from Fermi-LAT, HAWC and IceCube, the hadronic models have been updated
 - HAWC upper limits disfavor hadronic high-energy cutoff model for high-latitude region, in agree with Fermi-LAT detection
- Future gamma-ray observatories will constrain both hadronic and leptonic models and provide profound information of bubbles and Galactic center