

Physik-Institut

Searching $0\nu\beta\beta$ -decay up to 10²⁶ yr lifetime with GERDA

Roman Hiller for the GERDA collaboration

TeV Particle Astrophysics 2018, Berlin

$0\nu\beta\beta$ Motivation

- Hypoth. process in even-even nuclei, e.g., (Z, N)→(Z+2, N) + 2e⁻
- Relation to $2\nu\beta\beta$ (Ge: $T_{1/2} = 1.926 \pm 0.095 \times 10^{21} \text{ yr}$) Eur. Phys. J. C 75 (2015) 416
- Theory: Dirac vs. Majorana fermion
- Lepton number violation
- Potentially sensitive to other ν properties

$0\nu\beta\beta$ Detection

- $0\nu\beta\beta$ signature = peak at $Q_{\beta\beta}$ in e⁻ spectrum
- $\mathcal{O}(10)$ experimentally interesting isotopes
- No clear favorite ($G|M|^2 \sim \text{const.}$) $T_{1/2}^{-1} = G|M|^2 \left|\sum_{i=1}^3 m_i U_{ei}\right|^2$ *G* phase space integral, *M* nuclear matrix element
- Sensitivity ~ abundance efficiency $\sqrt{\frac{\exp osure}{BI \cdot \Delta E}}$ BI=background index, ΔE = energy resolution
- advatages of Ge: ΔE, detector tech. (purity, efficiency, enrichment)

The GERDA Collaboration

GERmanium Detector Array

GERDA experiment

- LNGS, Italy, 3500 m.w.e., Muons $10^6 \rightarrow \! 1 \mbox{ per } m^2 \mbox{ h}$
- Coaxial and BEGe type detectors
- 36 kg total Ge mass

Goals:

- $\ Bl{\sim}10^{-3} \ _{\rm keV\,kg\,yr}^{\rm cts}$
- 100 kg yr exposure \rightarrow sensitivity $\sim 10^{26} \text{yr}$
- Demonstrate LAr veto concept

Eur. Phys. J. C 73 (2013) 2330

University of Zurich, Physik-Institut 24/08/2018 $0\nu\beta\beta$ -decay up to 10^{26} yr with GERDA

Energy calibration

- Weekly calibrations with low neutron emission Th-228 sources
- Energy scale and resolution monitoring
- FWHM Energy resolution at $Q_{\beta\beta}$ Coax \rightarrow 3.6(1) keV BEGe \rightarrow 3.0(1) keV

Data taking

Phase II (Dec 2015-present):

- Blind analysis: Events at $2039\pm25\,keV$ released after analysis frozen
- Latest release June 2018, total 82.4 kg yr
- 35.7 kg yr fresh release (Phase IIc)
 + 23.2 kg yr from 2016/2017 (Phase IIa/b) + 23.5 kg yr from Phase I

(Raw) Energy spectrum Phase II

- Spectral features after muon veto and detector anti-concidence:

- $-2\nu\beta\beta$ continuum
- ⁴⁰K, ⁴²K lines
- Lines from U/Th chains
- Degraded α continuum
- (³⁹Ăr, ⁸⁵Kr)

Background model

- Fit individual sources from GEANT4 sim. to background data
- Screening measurements, coincidence rate, spacial info. K-lines
- Dominating backgrounds at $Q_{\beta\beta}$ _
 - degraded α β from ⁴²K

 - γ from U/Th chains

Background reduction

The signal signature is a point-like energy deposition of 2039 keV in a single detector.

Spectrum after cuts

- after background rejection cuts background rate in ROI reduced to $0.6 \cdot 10^{-3}$ cts/(keV kg yr)
- background rejection \sim 95% at signal efficiency of \sim 86/70% BEGe/Coax (only LAr veto, PSD)

ROI statistical analysis

Combined unbinned maximum likelihood fit (7 datasets PI + PII) Details on method: Agostini et al., Nature 544, 47-52, 2017

- 1 new event "close" (>2 σ) to $Q_{\beta\beta}$
- Best fit for no signal
- $-\ T_{1/2} > 0.9 \cdot 10^{26}\, yr$ @ 90% CL
- Median sensitivity (limit) 1.1 · 10²⁶ yr

Conclusion and Outlook

- GERDA has reached 10^{26} yr sensitivity for $0\nu\beta\beta$ half-life in 76 Ge
- Highest in the field, achieved due to unprecedented low background and with an exposure of 82.4 kg yr, approaching the target 100 kg yr
- GERDA was upgraded recently \rightarrow continue data taking until 2019
- ...after which we will transition to a bigger experiment in a bigger collaboration, LEGEND200 at LNGS

Backup

GERDA upgrade

- Replace natural coax with \sim 9 kg enriched inverted coax type
- Install denser fibre curtain, middle string curtain
- Repair electronics to recover the 3 lost channels
- Etch a few detectors to reduce their leakage current
- Replace cables with lower activity version

Beyond GERDA

- GERDA current limit $m_{\beta\beta} < 120 260 \,\mathrm{meV}$
- $\sim 10 \text{ meV}$ sensitivity to cover IH region (light Majorana- ν exchange)
- $-~T_{1/2} \sim 10^{27} 10^{28}\,\text{yr} \rightarrow \text{Background-free ton scale experiment}$

LEGEND

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay
- Collaboration formed October 2016 (GERDA, Majorana, others)
- 1 t scale experiment to reach 10^{28} yr sensitivity $(10^{-5} \frac{\text{cts}}{\text{keV kg yr}})$

LEGEND-200

- First 200 kg stage LEGEND-200 at LNGS (2021?)
- Reuse modified GERDA infrastructure
- Obtain 1 t yr exposure
- $10^{27}\,{
 m yr} \hat{=} 30 70\,meV$ discovery sensitivity
- Background 0.2 cts/keV t yr (x 1/5 rel. to GERDA/Majorana):

Germanium detectors in LEGEND-200

20 kg GERDA BEGes, 30 kg Majorana PPCs

- Excellent energy resolution ${\sim}3\,\text{keV}$ FWHM
- Pulse shape discrimination capability (SSE, MSE, surface)
- Small mass, 0.66/0.85 kg on average

New design Inverted-Coaxial Point Contact detectors

- Similar energy resolution and PSD capabilities
- Mass 1.5-2.0 kg \rightarrow less cables, electronics, cost
- Deployed and tested in GERDA upgrade ${\sim}9\,kg$

Pulse shape discrimination

- Discrimination of SSE/MSE, surface events
- Charge drift time \rightarrow pulse shape
- Current trace amplitude/energy
 amplitude/area

MULTI SITE EVENT (MSE)

SINGLE SITE EVENT (SSE)

AoE vs. ANN

- Current amplitude/energy very efficient PSD parameter for BEGes
- 87% acceptance of single site events (e.g. $2\nu\beta\beta$, $0\nu\beta\beta$)
- 80-90% rejection of multi site events (gamma)
- all \sim 500 alpha events so far rejected
- For Coax waveform more dependent on hit position

 \rightarrow artificial neural network, dedicated cut for MSE and alpha

LEGEND-200 vs. GERDA

- Review lock design (550 \rightarrow 610 mm)
- 11 additional strings
- Reduce nylon shroud volume
- Improved LAr veto efficiency
- Optimized material selection
- Larger detector channels
- Tweaked electronics (PSD)
- Feasibility of most improvements has been demonstrated in the laboratory

