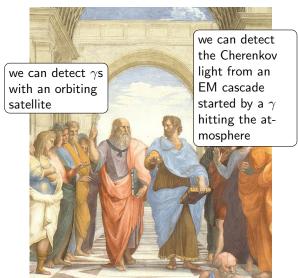
TOWARDS MULTI-INSTRUMENT AND REPRODUCIBLE GAMMA-RAY ANALYSIS

C. Nigro* 1 C. Deil 2 R. Zanin 2 T. Hassan 1,3 J. King 2 J.E. Ruiz 4 L. Saha 5 R. Terrier 6 K. Bruegge 7 M. Noethe 7 R. Bird 8 T. T. Y. Lin 9

 $^{\star} contact: cosimo.nigro@desy.de$ $^{1}DESY\ Zeuthen,\ ^{2}MPIK\ Heidelberg,\ ^{3}IFAE-BIST\ Barcelona,\ ^{4}IAA-CSIC\ Granada,\ ^{5}UCM\ Madrid,\ ^{6}APC\ Paris,\ ^{7}TU\ Dortmund,\ ^{8}UCLA,\ ^{9}McGill\ Montreal$

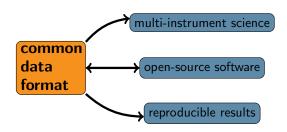
TeV Particle Astrophysics, 27-31 August, Berlin, Germany


simo Nigro 1 /

Introduction

Cosimo Nigro 2 / 17

The importance of a common language / format


> Different philosophies, same language.

Cosimo Nigro 3 / 17

The importance of a common language / format

- Analysis and combination of data from different gamma-ray instruments today: proprietary software, case-by-case methods
 translating Plato to Aristotle!;
- what do we gain by defining a common format for gamma-ray data?
 let Plato and Aristotle speak Greek!

Cosimo Nigro 4 / 17

A common gamma-ray format

- Community effort already started at Data formats for gamma-ray astronomy forum http://gamma-astro-data-formats.readthedocs.io;
- which level to unify?

IACT data level	description	reduction factor
DL0	raw output of DAQ	
DL1	calibrated quantities (charge, arrival time)	1 - 0.2
DL2	reconstructed shower parameters	10^{-1}
DL3	reduced γ ray candidates + IRFs	10^{-2}
DL4	science data products: spectra, LC, skymaps	10^{-3}
DL5	observatory data: surveys, catalogues	10^{-3} - 10^{-5}

- space-borne instrument data (e.g. Fermi-LAT) can be embedded in this scheme;
- > files stored in FITS format (a 30-year standard in astronomy).

Cosimo Nigro 5 / 17

The joint-crab effort

Cosimo Nigro 6 / 17

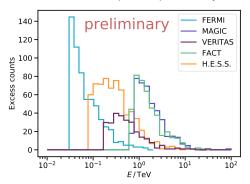
Objectives

- Using this preliminary DL3 format, we perform the first fully-reproducible multi-instrument gamma-ray analysis;
- relying on open-source software: gammapy;
- combining data from Fermi-LAT, and the four existing IACTs, to produce a joint fit of the Crab Nebula spectrum;
- > DISCLAIMER: the purpose of this project is to show a method, not to provide a new measurement of the Crab Nebula spectrum.

Cosimo Nigro 7 / 17

Datasets

- > Fermi-LAT data freely available;
- small samples of DL3 data released by IACT collaboration for this project, FACT¹ and H.E.S.S.² datasets already available to the public.

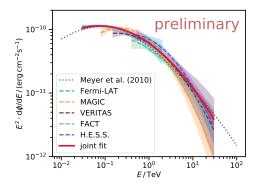

Dataset	time	obs. mode	$E_{\min} \ / \ TeV$	$E_{\mathrm{max}}\ /\ TeV$
Fermi-LAT	\sim 7 years	sky survey	0.03	2
MAGIC	40 mins	pointing	0.08	30
VERITAS	40 mins	pointing	0.15	30
FACT	10 hours	pointing	0.40	30
H.E.S.S.	3 hours	pointing	0.50	30

¹https://fact-project.org/data/

²https://www.mpi-hd.mpg.de/hfm/HESS/pages/dl3-dr1/

Analysis: data reduction

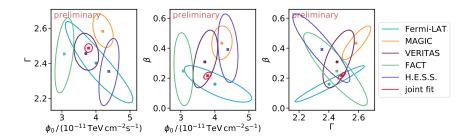
- One-dimensional (energy dependent) spectral likelihood fit:
 - → observed counts: via aperture photometry techniques;



→ expected counts: folding IRFs with assumed spectral model:

log-parabola
$$\frac{d\phi}{dE} = \phi_0 \left(\frac{E}{E_0}\right)^{-\Gamma + \beta \log_{10}\left(\frac{E}{E_0}\right)}$$

Cosimo Nigro 9 / 17


Analysis: likelihood fit

Resulting Crab Nebula SED from individual instruments and from the joint fit.

Cosimo Nigro 10 / 17

Analysis: likelihood fit

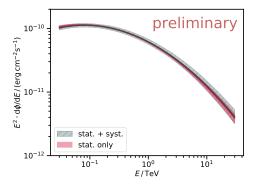
> Likelihood $1-\sigma$ contours for the log-parabola parameters for individual instruments and the joint fit.

Cosimo Nigro 11 / 17

Systematics

- Systematic uncertainties on the energy scale of the different instruments accounted for by introducing nuisance parameters:
 - $ightharpoonup z = \frac{\tilde{E} E}{E} = \frac{\tilde{E}}{E} 1;$
 - \rightarrow differential flux in reconstructed energy \tilde{E}

$$rac{d ilde{\phi}}{d ilde{E}} = \phi_0 \left(rac{E/(1+z_{
m instr})}{E_0}
ight)^{-\Gamma+eta \log_{10}\left(rac{E/(1+z_{
m instr})}{E_0}
ight)} imes \left(rac{1}{1+z_{
m instr}}
ight);$$


> global likelihood function extended with the distributions of the nuisance parameters $z_{\rm instr}$ per each dataset

$$-2\sum_{ ext{all instruments}} \ln \mathcal{L}(\phi_0, \Gamma, \beta, z_{ ext{instr}} | \textit{N}_{ ext{ON instr}}, \textit{N}_{ ext{OFF instr}}) + \left(rac{z_{ ext{instr}}}{\delta_{ ext{instr}}}
ight)^2$$

where δ_i = the uncertainty in the energy reconstruction estimated by each instrument.

Cosimo Nigro 12 / 17

Systematics

Resulting Crab Nebula SED from the joint fit including both statistical and systematic error bands.

Cosimo Nigro 13 / 17

Using a theoretical model

- An analytical function is not the only possibility to perform a likelihood fit, any theoretical model can be used for $\frac{d\phi}{dE}$.
- Typically theoretical models are not plugged in the likelihood estimation but fitted to spectral points:
 - often not unfolded (i.e. in $E_{\rm est}$), and limited in cases where the energy dispersion plays a major role.
- Releasing the results of the data reduction (i.e. excess distributions and IRFs) would allow:
 - successive likelihood fit with any arbitrary theoretical model (example with naima in the on-line material of the publication in progress);
 - later combination with any other MWL data for highly collaborative and extensible future work.

Cosimo Nigro 14 / 17

How is reproducibility achieved?

- > Short-term:
 - all the code will be publicly available in GitHub https://github.com/open-gamma-ray-astro/joint-crab;
 - \rightarrow the size of the data is \sim MB, can be provided along with the code;
 - → packages managed via anaconda environment.
- Medium-term:
 - it may happen that the conda virtual environment is not enough to guarantee reproducibility (software not anymore mantained), a Docker container will be provided on DockerHub.
- > Long-term:
 - on-line material available on Zenodo.

Cosimo Nigro 15 / 17

Wrap-up and prospects

Cosimo Nigro 16 / 17

An open gamma-ray science

- > What can our community achieve?
- An approach to gamma-ray science, summarized by three essential concepts: common data-format, open-source software and fully-reproducible results, the first being the cornerstone of the last two.
- With the joint-crab example we illustrate **this approach is** already within our reach: relying on a prototypical DL3 format we combine data from *Fermi*-LAT and the four existing IACTs and make the analysis reproducible within the context of open resources (software, hosting platforms).
- A key asset for future gamma-ray instruments like CTA that will be operated as an open observatory and share its data with a wide astronomical community.

Cosimo Nigro 17 / 17