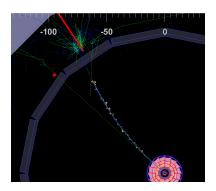
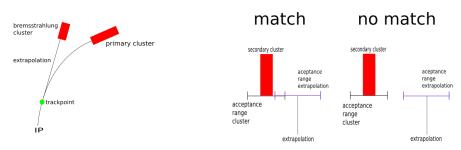


Bremsstrahlungsfinding with Calorimeter Information

Patrick Ecker | 30.06.2017

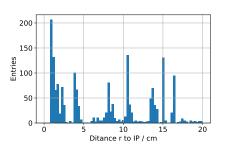

INSTITUT OF EXPERIMENTAL NUCLEAR PHYSICS (IEKP)

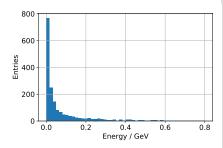
Goal of the Module


- Search for bremsstrahlung photons emitted in the inner part of the detector (VXD)
- Get information about the position of bremsstrahlung radiation
- Save the collected information so the lost energy can be added later and the track fit can be improved

The Idea

Belle Method: photons lying in a 5 degree cone around the electron trajectory are added to the 4-vector of the electron

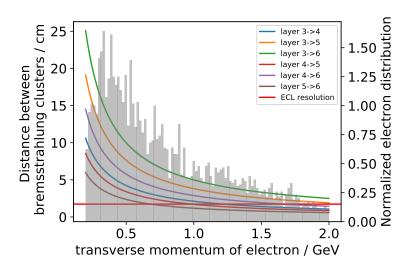



- Extrapolate from the trackpoint to the ECL
- Check if the acceptance range of the cluster position and the extraplation overlap
- Acceptancerange:

 $acceptance range = acceptance Factor \cdot position uncertainty$

Bremsstrahlung Characteristics

- Most of the bremsstralung photons were emitted in the inner part of the detector (VXD)
- Most of the photons have an energy below 0.2 GeV


ECL Position Resolution

- Is the position resolution of the ECL good enough, so we can match the photon emission with the right VXD layer?
- The distance between two bremstrahlung cluster which were emitted on different VXD layers is approximately given by

$$d \approx f_1(r_{l1}, r_{l2}) \cdot \omega + f_2(r_{l1}, r_{l2}) \cdot \omega^3$$

where $\omega \sim \frac{1}{\rho_T}$ is the curvature of the track and f_1, f_2 are functions depending on the radii of the VXD layers

for momenta where the curve lies under the red line we cannot differentiate between the two layers when assigning the cluster to a hit

The Algorithm

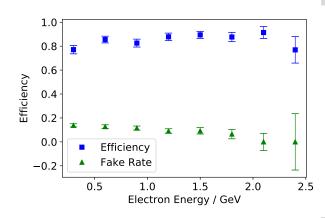
Loop over all tracks

- Get the primary cluster for each track and the related RecoTrack
- 2 Loop over all ECL clusters in the event
 - Check if cluster is secondary (e.g. not related to track)
 - Loop over all VXD track points
 - Extrapolate from each trackpoint to the ECL and check if the extrapolation matches the cluster position
 - If a match is found with a given acceptance factor, save this match
 - Get the best match from all matches
 - Set a relation from primary cluster to the expected bremsstrahlungcluster
 - Save the Sorting Parameter of the track point to get information about the expected position on which the bremsstrahlung emission happened

Efficiency and Fake Rate

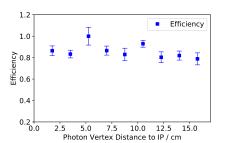
Efficiency depends on choice of acceptance factor

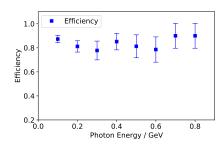
$$\begin{aligned} & \text{Efficiency} = \frac{\# \text{ secondary cluster with correct relation}}{\# \text{ bremsstrahlung photons with cluster}} \\ & \text{Fake Rate} = \frac{\# \text{ secondary cluster with wrong relation}}{\# \text{ secondary cluster with relation}} \end{aligned}$$


Table: Efficiency and Fake Rate depending on Acceptance Factor. Results based on 10,000 Y4S-Events without background

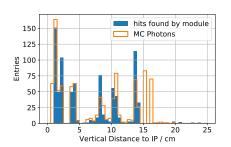
Acceptance Factor	Efficiency [%]	Fake Rate [%]
1.0	43.99	7.45
2.0	73.70	13.49
3.0	84.45	16.50
4.0	87.10	19.98
5.0	89.13	23.02

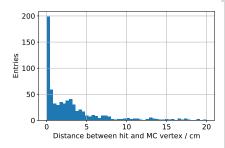
Efficiency and Fake Rate depending on Electron Energy




- Efficiency is slightly increasing with higher energy of the primary electron ⇒ reason is the lower curvature of the track
- Fakre rate is slightly falling with increasing electron energy

Efficiency over Photon Characteristics





- Efficiency not dependig on production vertex of the bremstrahlungsphotons
- Also not depending on the bremstrahlungphotons energy

Reconstructed photon vertex

- Distribution of the found bremsstrahlung photon vertex positions matches the distribution obtained MC information
- lacktriangle low efficiency for region r>15 cm ightarrow under investigation
- In most cases the reconstructed bremstrahlung photon vertex is in short range to the MC vertex

Summary

Module works and is very fast (< 5 ms)</p>

Good efficiency on Y4S-Events without background

No dependency on bremsstrahlung photons energy or vertex position

Good assigment to correct radiation vertex (68% < 5 cm)

Outlook

Check the efficiency and fake rate in Y4S-Events with background

Compare the efficiency of the module with the method used at Belle

 Incorporate the module into the electron-Track Fit and check if the resolution improves (mid term)