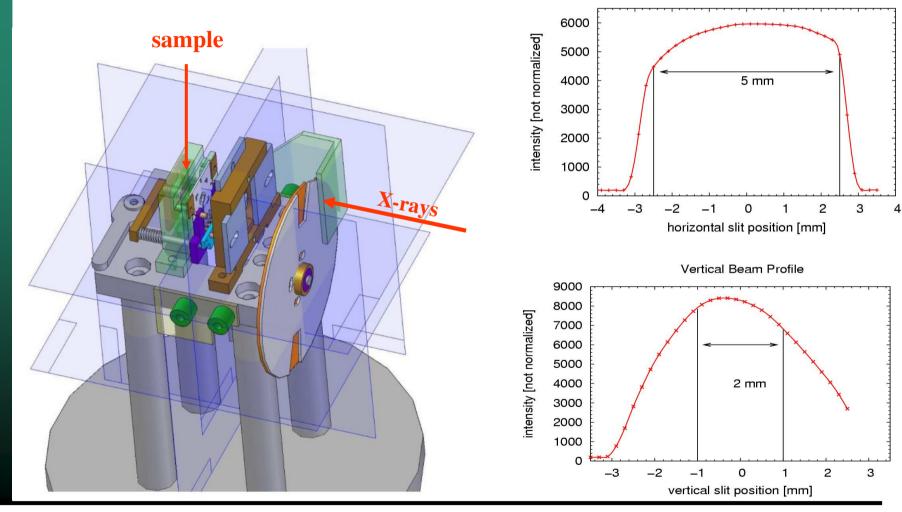


VLDT-Overview UNI-HH Georg Steinbrück

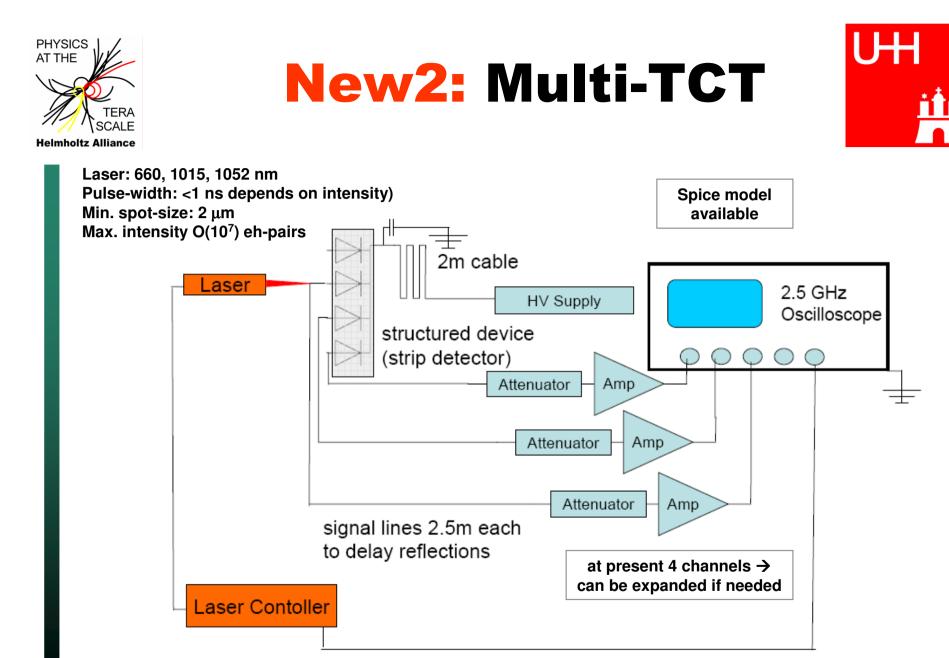
VLDT: Support

- 1. Irradiations, post-irradiation treatment
- 2. Measurement of microscopic and macroscopic damage parameters (new: multi-TCT)
- 3. Simulations for detector optimization
- + Data base irradiation base for different materials and types of irradiation
- 4. UHH involvement in development of radiation hard silicon for the sLHC: WP 2.4 + CEC


Infrastructure for Si characterization/irrad.

- Existing: I/V, C/V, TCT, DLTS + T-annealing working and continuously upgraded
- <u>New-1</u>: X-ray irradiation (F4@DORIS)
 - 10 keV (Γ~10 keV)
 - spot: 5 mm x 2 mm (scanning \rightarrow larger areas)
 - dose (SiO₂-surface): 0.5-150 kGy/s
 - T-control
 - on-line biasing

Horizontal Beam Profile

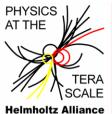


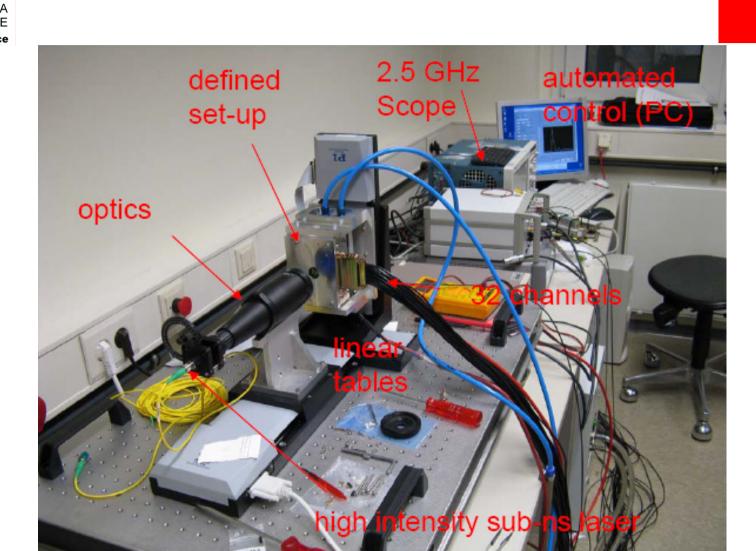
April 3, 2009

PHYSICS AT THE

VLTD Hamburg-Status

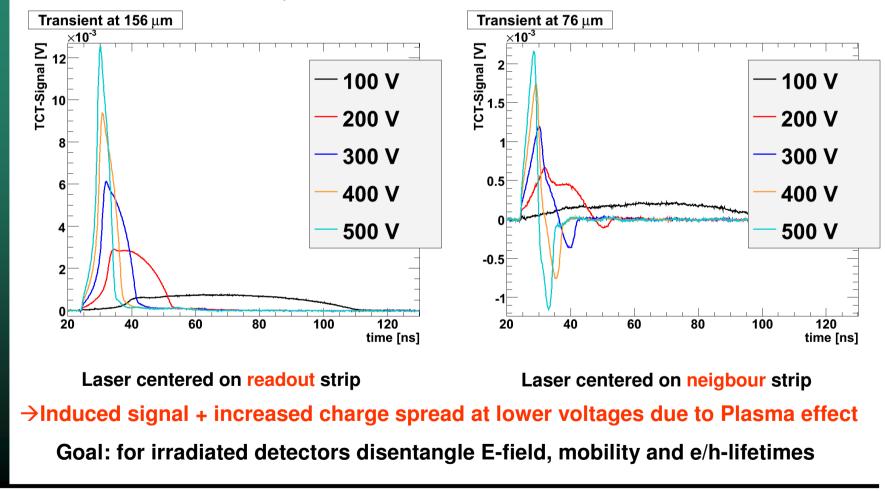
G. Steinbrück 3


triaaer line

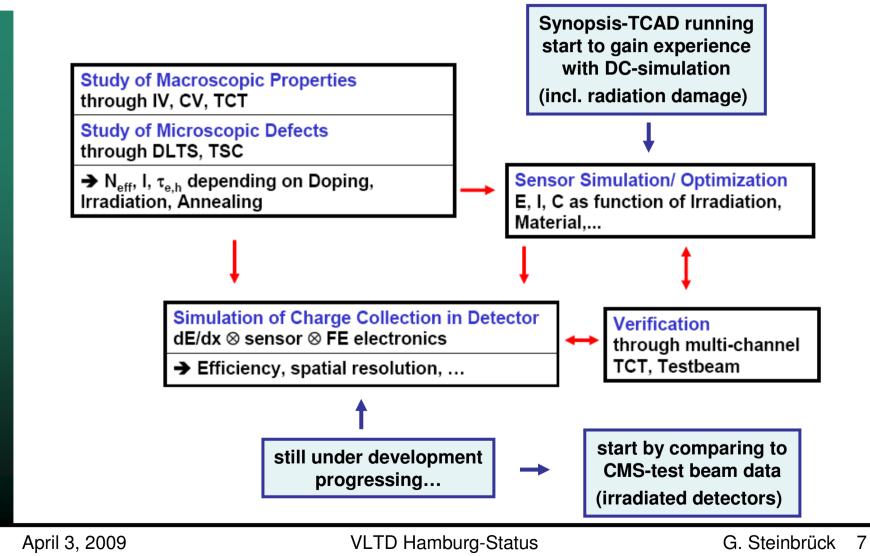

April 3, 2009

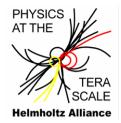
VLTD Hamburg-Status

G. Steinbrück 4

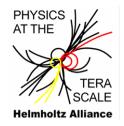

UH

New2: Multi-TCT




80 μm strip detector, n-type, U_{dep}= 63 V, 9.1 10⁶ eh-pairs (285 mips), spot ~2 μm, 3 μm penetration on n⁺-side

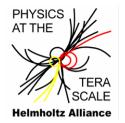
New 3: Simulation tools UH for sensor optimization



WP 2.4 Radhard Si-sensors for the sLHC

Proposal HGF-Alliance:

- 1. Improve intrinsic radiation hardness of material (HH+KA)
- 2. Optimize design for radiation hardness (HH)
- 3. Participate in CMS-pixel prototype (HH+KA+PSI+...)
- 4. Build + characterize Si-strips using m-Czochralski (KA)


1.Materials

- Systematic study of different materials ongoing lots of work!
- Goal: Understand Scaling of macroscopic parameters (e.g. N_{eff}, T, f ...). Progress being made...
- Breakthrough in prediction of macroscopic effect due to microscopic defects
- Satisfactory model for effects of trapping missing (includes the under-standing of > 100 % CCE at high irradiations and high fields)
- Mixed irradiations (KA) have to be done systematically and probably understood also on the microscopic level
- Setting up of data base of macroscopic damage parameters for different materials, fluences and radiation types started – necessary input for design optimisation

Lots of work, progress is (in most cases) good

For more details see Alexandra Junkes (micro-macrosopic properties) and Jörn Langes presentations (charge collection for rad. damaged Si)

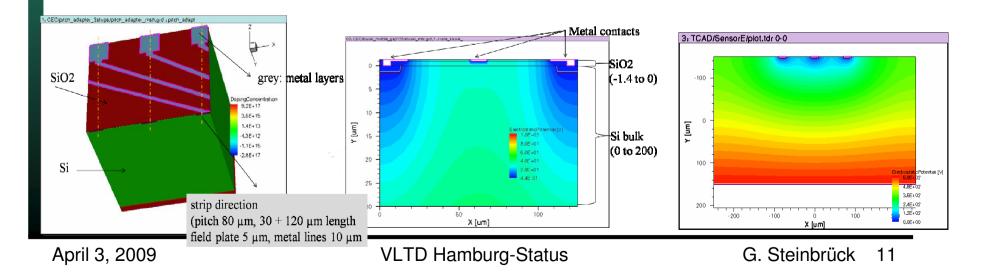
2. Radiation hard design

Use input from 1. (macroscopic and microscopic) to

- 1. optimize DC design (eg using Synopsis-TCAD): E-field, I_{dark}, C
- → work ongoing, big effort to understand/check results; now several groups have started similar work, needs lots of cross-checking and collaboration (Post-doc)

[NB. program TASCA from WIAS could also be used!]

- 2. optimize charge collection, charge sharing signal shapes as function of sensor design, radiation dose, applied voltage, B-field, electronics shaping, cross-talk with the aim to optimize dx, ϵ using as input micro- and macroscopic measurements
- → first version of program running and under debugging; next: compare to CMS-Si- strips test beam data (w/wo irradiation) and m-TCT pulse shapes; possibility to compare to other data (PhD-thesis)



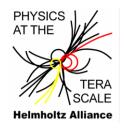
CEC Simulation effort

Regular meetings have started

Next steps

- 3-D simulations needed in most cases: started
- **Double metal and connectivity schemes**
- **Radiation effects**
- Work started and progressing to evaluate improvements of
 - Test structures
 - Strixel design (4 strixels, no double metal)
 - Integrated pitch adapter onto sensor

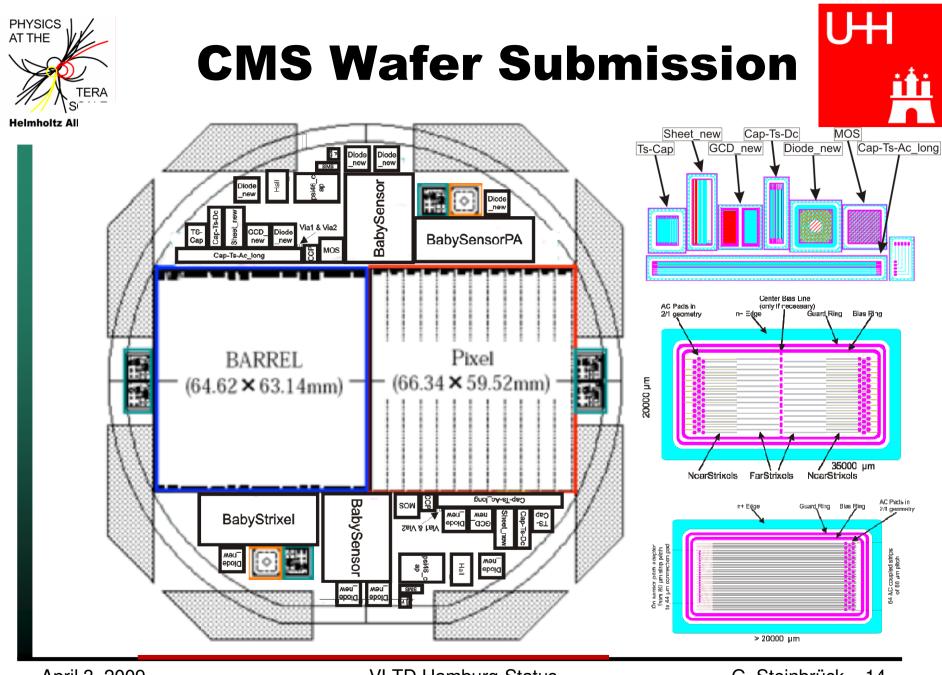
CEC simulations mainly by Louvain Hamburg Karlsruhe Vilnius


3. sLHC detectors

Alliance Proposal: HH+KA with PSI develop prototype pixel sensors

→ abandoned (HH) in favour of <u>CEC the Central European Consortium^{*)}</u>

- R&D project to develop materials, technologies and simulations for silicon sensor modules at intermediate to large radii of a new CMS tracker for SLHC
- Members: AC, DESY, HH, KA, Louvain, Vienna, Vilnius, Santander, Warzawa
- Topics (large overlap with alliance → "synergy" + system aspects):
 - Investigate sensor materials
 - Sensor design and optimization
 - Investigate connection schemes for strixels (wire bonding, bump bonding, 2nd metal layer)
 - Develop common test-structures
 - Investigate CO₂-cooling
 - + close contact to CMS physics performance studies
- Goal: Find a single material and module design for the outer tracker and determine the minimum radius for which the modules can be operated
- Proposal approved by CMS
- ^{*)} F. Hartmann (KA) + D. Eckstein, G. Steinbrück (HH) coordinators


CMS Wafer Submission

BabySensorPA

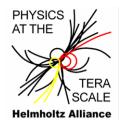
- Producer HPK
- Submission soon
- Contains large strip and pixel structures
- Additional teststructures defined by our R&D project
- Materials and thicknesses:
 - n-MCz: 200µm
 - p-MCz: 200µm*
 - n-Epi: 50µm, 100µm
 - p-Epi: 50μm*, 100μm*

- BabyStrixel
- n-FZ: 320mm, 200μm, 100μm and 200μm+double metal
- p-FZ: 320mm, 200μm*, 100μm* and 200μm+double metal (p-stop only)
- *2 versions with p-stop or p-spray isolation

April 3, 2009

VLTD Hamburg-Status

G. Steinbrück 14


Detailed Planning for HPK Run

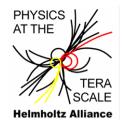
TERA SCALE

CEC has set up detailed measurement program:

- The measurement specifications
 - Multi-TCT, IV/CV, strip measurements (mainly Cint&Cb), DLTS
 - Test structure characterization
 - Special structure (PA&strixel) characterization
- The teams for measurement/irradiations
- Logistics (e.g. cross-calibration, redundancy, shipping, time)
- Planned studies: (There will be 6 wafers per thickness/technology)
 - 1. PROTON SLHC scenario; ONE (both halfmoons)
 - •4 steps to mimic real operation:
 - Measure-irradiate-light annealing-measure-irradiate ...
 - 2. NEUTRON SLHC scenario; ONE (both halfmoons)
 - 3. MIXED (n+p) irradiation (full annealing study); TWO (halfmoons + multigeometry)
 - Proton dominated equal to r=10 cm
 - Neutron dominated equal to r=40cm
 - CCE and resolution with SR90 and cosmics
 - 4. STANDARD iso-thermal annealing study; all diodes of ONE wafer
 - Irradiate to 5 (6) different fluences
- With some structures from campaign (1.2.3) → test beam study

CEC: Aachen DESY Hamburg Karlsruhe Louvain Santander Vienna Vilnius Warsaw

Funding applications



\rightarrow for HH:

- large overlap (synergy) WP 4.2 and CEC contributions
- strengthening of detector group by HGF-alliance has been important for a strong involvement in CCE

Funding applications

- bmbf-Verbundforschung: FSP-CMS
- ✓ XFEL: rad. hardness for X-ray science + plasma effects in Sisensors
- ✓ MC-PAD: Marie Curie Training Network (2 PhD positions, candidates being interviewed)

Summary

VLDT:

- "Existing" infrastructure in good shape and used; continuous upgrades ongoing
- Promised upgrades of "new" infrastructure in good shape
- Progress in simulations (sensor + charge collection) being made
- So far no customers from Alliance (but from MPI, DESY and WIAS related to Xray science)

WP2.4:

- Pixels abandoned in favour of CEC-strixels
- Material studies: new surprises and hopes; new materials and structures via CMS-CEC
- Simulation effort (sensors + performance) started in earnest.

Overall: satisfactory progress, waiting for submission of test-wafers to HPK