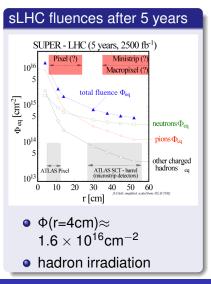
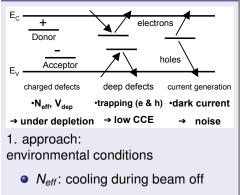
Radiation hard silicon: microscopic damage, effective doping and dark current.

D. Eckstein¹ E. Fretwurst¹ <u>A. Junkes</u>¹ G. Lindström¹ I. Pintilie^{1,2}

¹Institute for Experimental Physics - Detectorlab University of Hamburg, Germany

²NIMP Bucharest-Magurele, Romania


2nd Terascale detector workshop, 2-3 April 2009, Hamburg



Motivation

Irradiation produces bulk damage

- trapping: cooling does not help
- *I*_{dep}: cooling during operation

2. approach: defect engineering

aims

- identification of damage induced defects
- kinetics of defect formation
- Defect engineering and operational conditions

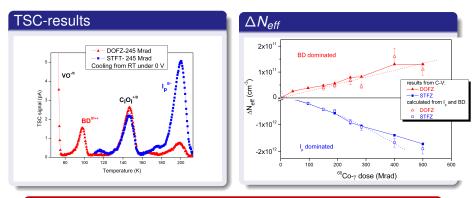
methods

- combined microscopic and macroscopic measurements
- defect analysis by DLTS and TSC
- detector properties by CV/IV characteristics

Identifying defects with impact on sensor properties

microscopic techniques

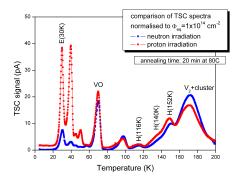
- Deep Level Transient Spectroscopy for $\Phi_{eq} < 10^{12} \text{ cm}^{-2}$
 - capacitance transients during the emission from filled traps
- 2 Thermally Stimulated Current for $\Phi_{eq} > 10^{12} \text{ cm}^{-2}$
 - current due to emission from filled traps
- measured quantities:
 - position in bandgap Δ*E_T*; capture cross sections σ_{n,p}; trap concentration


Then take defect concentrations and:

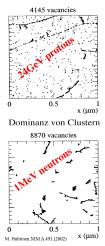
- 1. follow defect kinetics during the annealing
- 2. combine results with macroscopic measurements

summary 0

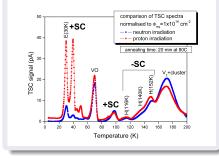
Example: oxygen rich material for LHC


⁶⁰C0-γ irradiation creates only point defects, no clusters

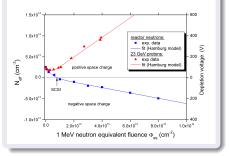
change of N_{eff} well described


First breakthrough in understanding the damage effects

TSC results for EPI-DO after neutron and proton irradiation


- cluster independent on material
- cluster most likely multiple vacancies

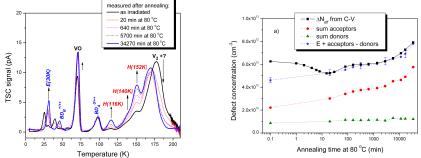
Punktdefekte & Cluster



Influence of detected defects on N_{eff}

TSC results for EPI-DO after neutron and proton irradiation

development of N_{eff} for EPI-DO neutron and proton irradiation


- SCSI after neutron but not after protons
- donor generation enhanced after proton irradiation

microscopic defects explain macroscopic effects

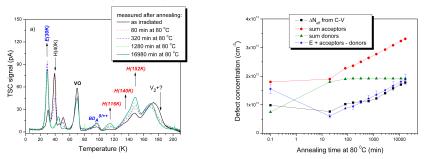
macroscopic results

Isothermal annealing $\Phi_{eq} = 5 imes 10^{13} ext{cm}^{-2}$ (1MeV n)

microscopic vs. macroscopic

acceptor generation dominates

TSC-results (EPI-DO)

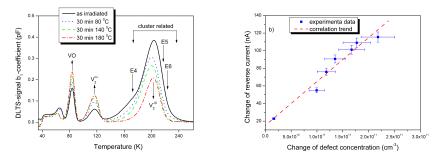

reverse annealing can be explained by deep acceptor traps

microscopic results predict macroscopic findings!

microscopic vs. macroscopic

Isothermal annealing $\Phi_{eq} = 2 \times 10^{14} \text{cm}^{-2}$ (23 GeV p)

TSC-results (EPI-DO)


- donor generation enhanced relative to acceptor traps
- donor generation partly compensating acceptors

real breakthrough in understanding irradiation damage

Dark current correlates with deep electron clusters

DLTS study of MCz, $\Phi_{eq.} = 3 \times 10^{11} cm^{-2}$

only electron traps are shown

close correlation to cluster related deep electron traps

summary

- beneficial impact of oxygen enrichment related to point defects
- cluster related defects responsible for hadron damage
- complete understanding of defect kinetics achieved

outlook

- introducing hydrogen to passivate dangling bonds
- mixed irradiations important for larger radii
- p-type material no type inversion?