

The main background sources for the SHiP experiment at CERN

GK BLOCKKURS, BERLIN, 18.09.2017

Plamenna Venkova Supervisor: Prof. Heiko Lacker

Where to find new physics

• Experimental evidence for physics beyond the SM

 \rightarrow Neutrino Masses, Dark Matter , Baryon asymmetry

• Possible ways to search for new physics

HNL of the vMSM (Neutrino Minimal Standard Model)

 \rightarrow Light N₁ dark matter candidate , Heavy Neural Lepton N_{2.3}

SHIP Search for Hidden Particles

Shaposhnikov GorbunovarXiv05071729

Concept and design

Yields for 2×10^{20} pot (5 years): $> 10^{18} D$, $> 10^{16} \tau$

• Surround Background Tagger (SBT):

Liquid Scintillator segments around the vessel

• Evacuated the vessel

reduce the muon flux by at least six order Magnitude

Crucial challenge : Negligible Background

Possible signals and background sources

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

Background source	Decay modes
$\nu \text{ or } \mu + \text{nucleon} \to X + K_L$	$K_L \to \pi e \nu, \pi \mu \nu, \pi^+ \pi^-, \pi^+ \pi^- \pi^0$
$\nu \text{ or } \mu + \text{nucleon} \to X + K_S$	$K_S \to \pi^0 \pi^0, \pi^+ \pi^-$
$\nu \text{ or } \mu + \text{nucleon} \rightarrow X + \Lambda$	$\Lambda \to p\pi^-$
$n \text{ or } p + \text{nucleon} \to X + K_L, \text{ etc}$	as above

Neutrino background

- 10¹¹ (7.3 10¹⁰) (anti-) neutrinos per spill (10¹³ pot) coming from the target
- 10⁷ neutrino interactions expected for N_{pot} = 2.10²⁰ (5 years run) in the experimental set

Muon DIS (Deep Inelastic Scattering) background

Cavern's material

Surrounding Background Tagger (SBT)

Inner Support Wall

Liquid Scintillator Segments

- Experimental Set-Up:
 - → Liquid Scintillator segment:equipped with Wavelenght-shifting Optical Modules (WOMs) viewed by PMT or SiPMs
 - Requirements:
 - \rightarrow high efficiency
 - \rightarrow good timing resolution
 - Participating Institutes : Berlin,Geneva, Kiev, Mainz

- The SBT in the Software:
 - \rightarrow The size in Z ~ 80cm, 30 cm thickness

Decay Vessel

- →Mark the segment as fired if the Energy deposit> threshold=45MeV
- \rightarrow Save the XYZ position of the segment , time information

Main Projects for PhD thesis

- Study the Hit rate in the SBT for muons from the target
- Study different background sources and the role/performance of the SBT in the suppression of these backgrounds

Study the Background event Rate from muons from the target in the SBT

Sum of Deposited Energy loss per Number of Fired segments per segment without threshold event (without threshold) 10¹⁰ 10^{6} 10⁶ 10^{4} 10^{3} E [MeV] **Number of Fired Segments**

Origin of the peak: MIP

Background events rate for different thresholds in the SBT :

0 MeV	5 MeV	25 MeV	45 MeV	65 MeV
267 MHz	54MHz	13MHz	7.5MHz	6.7MHz

Background events rate for different thresholds per segment:

0MeV	5MeV	25MeV	45MeV	65MeV
242kHz	49kHz	23kHz	12kHz	6kHz

Perform the same studies for neutrino and muon DIS background

• Muons from the target :

→ from 18 M (corresponding to 1/1000 of one spill) 18 hits start of the Decay Vessel

• Possible ways to increase the statistics ?

- 1. Generate DIS event (Pythia)
- 2. Propagate them with Geant4
- 3. Look for possible HNL candidates , passing the offline selection cuts

Backup slides : MiniWOMs

Backup slides: Number of Fired segments for different thresholds

Backup slides: The position of the fired segments without thresholds

Backup slides: The position of the fired segments without thresholds

 \rightarrow hot spots in region1: 50 cm in Y and in 50 cm in X