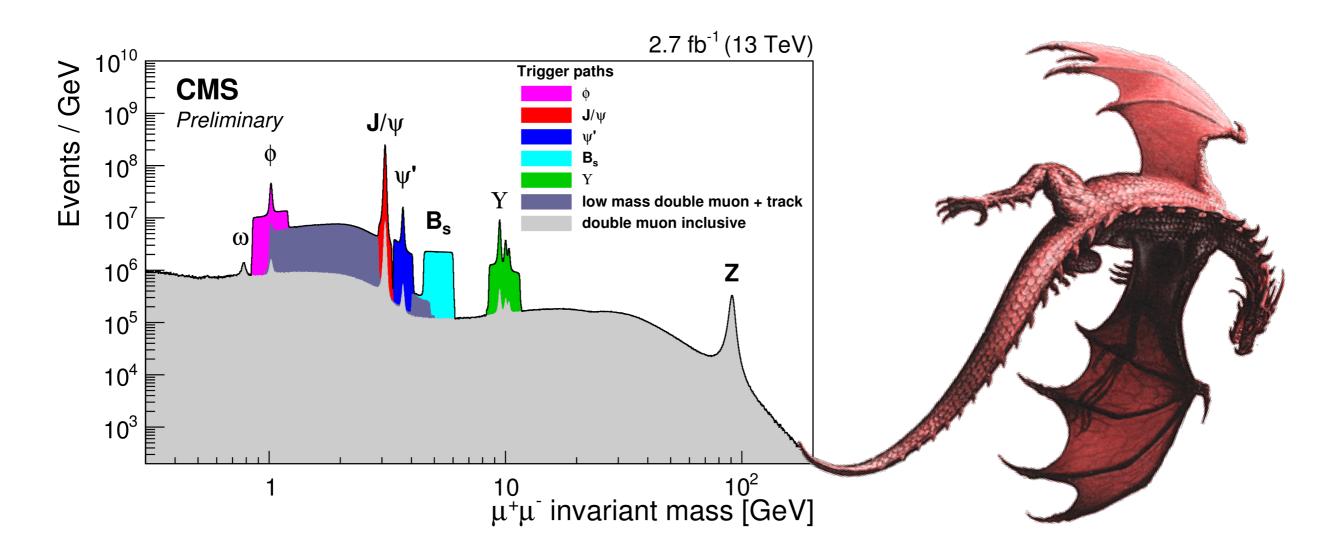
Indirect effects of BSM physics at future colliders

Andreas Weiler TU München

Workshop on Future Hadron Colliders at the Energy Frontier 14.12.2017

Why not indirect?

• Because direct is better (Pedro's talk).



If scale of new physics beyond kinematic reach, EFT systematically captures information about BSM in a *model-independent* way. Easy to recast.

Only requirement:

 $\Lambda \gg E_{\text{experiment}}$

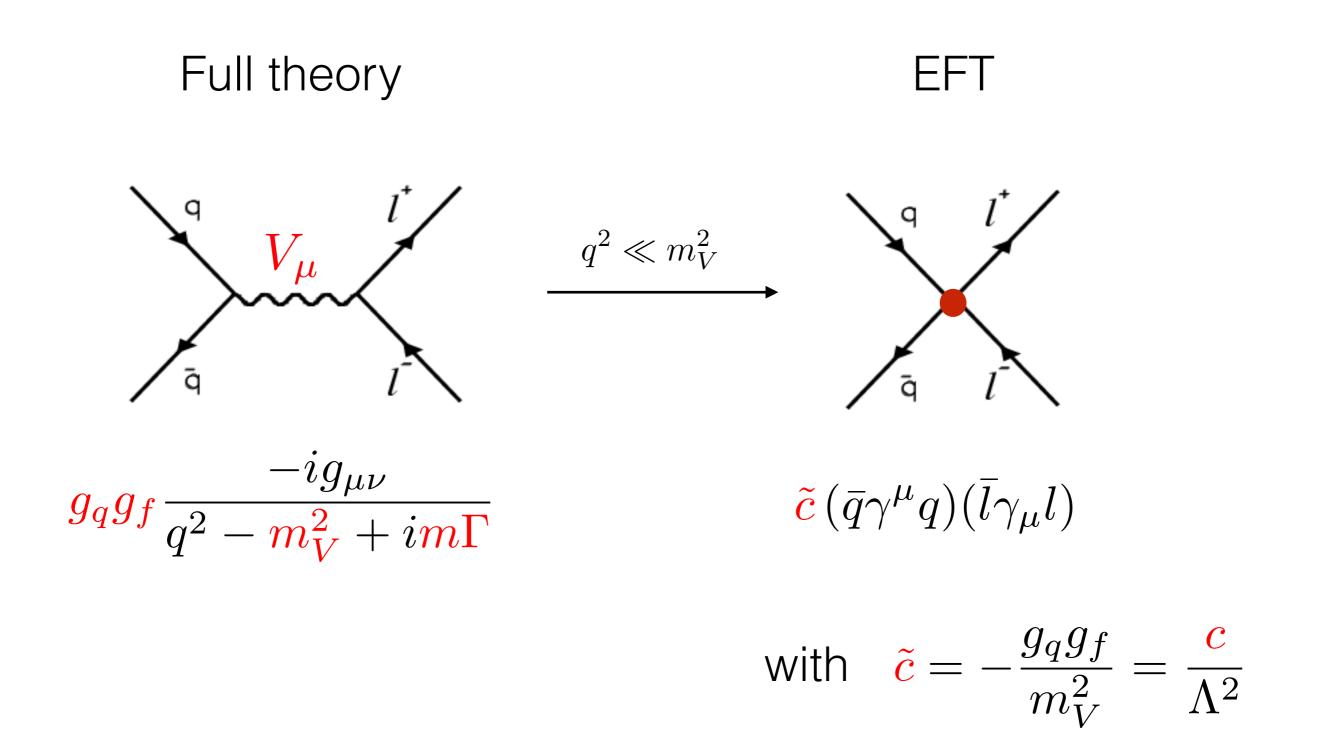
$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \dots$$

Not included here:

- D=5 (or D=7) because they are L (or B) violating
- D=8 and higher by assumption sub-leading.
- EFT contains most general departure from SM at low-E, 2499 distinct operators:

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi) \Box (\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(u_s^{\gamma})^TCe_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^\alpha)^TCu_r^\beta\right]\left[(u_s^\gamma)^TCe_t\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$					



Enormous reduction of complexity (loss of information)

Which operators are important?

- For a given process, only a small number of EFT operators contribute
- Ignore those already very constrained: LEP Z-Pole, low-energy precision experiments
- Find convenient parametrization which makes poorly constrained directions obvious
- Focus here: nature of EWSB

How can we test EFTs?

- Precision
- Energy

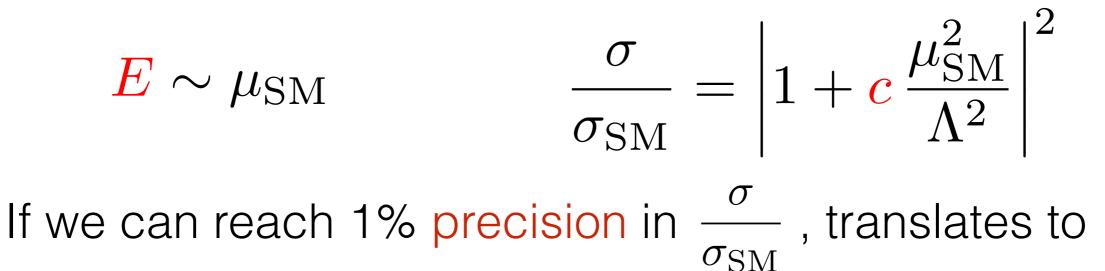
Precision

Measure at fixed energy scale: - Higgs, Z, t decays - Inclusive SM x-sec's

$$\frac{E}{\sigma_{\rm SM}} \sim \mu_{\rm SM} \qquad \qquad \frac{\sigma}{\sigma_{\rm SM}} = \left| 1 + \frac{c}{\Lambda^2} \frac{\mu_{\rm SM}^2}{\Lambda^2} \right|^2$$

Precision

Measure at fixed energy scale: - Higgs, Z, t decays - Inclusive SM x-sec's



$$\delta \sim \left(\frac{m_h}{\Lambda}\right)^2 \longrightarrow \Lambda \sim 1.2 \,\mathrm{TeV}$$

Ultimately limited by systematics, but useful for poorly constrained directions (e.g. HH).

Energy

Look into high-E tails of distributions, e.g. m_{\parallel} , $p_{T}(H)$, ...

$$E \sim m_{ll} \gg \mu_{\rm SM}$$
 $\frac{\sigma}{\sigma_{\rm SM}} = \left| 1 + c \frac{E^2}{\Lambda^2} \right|^2$

Energy

Look into high-E tails of distributions, e.g. m_{\parallel} , $p_{\top}(H)$, ...

$$E \sim m_{ll} \gg \mu_{\rm SM}$$
 $\frac{\sigma}{\sigma_{\rm SM}} = \left| 1 + c \frac{E^2}{\Lambda^2} \right|^2$

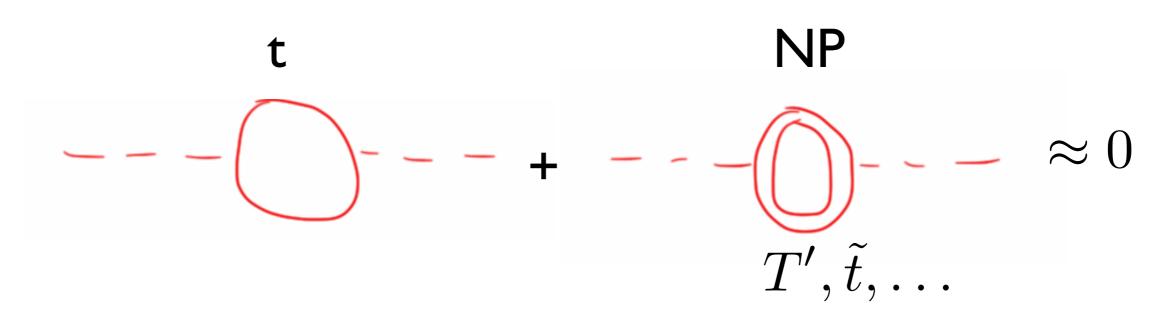
Can reach large scales, even if precision is low,

$$\delta \sim \left(\frac{E}{\Lambda}\right)^2 \qquad \begin{array}{c} \delta \sim 10\% \\ \hline \bullet \\ E = 1 \,\text{TeV} \end{array} \qquad \begin{array}{c} \Lambda \sim 3 \,\text{TeV} \end{array}$$

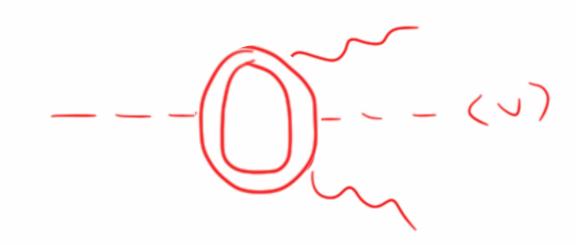
Additional benefit: often probes new directions

Example: single Higgs $\sigma(pp \rightarrow h + X)$

The hierarchy problem...

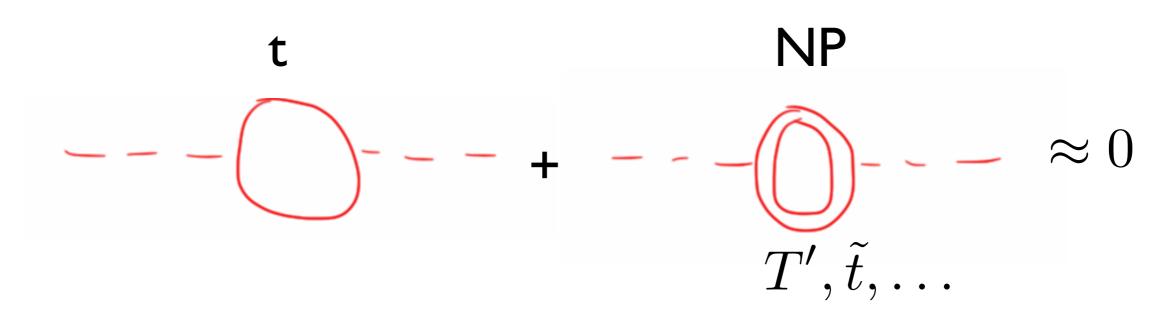


... motivates deviations in



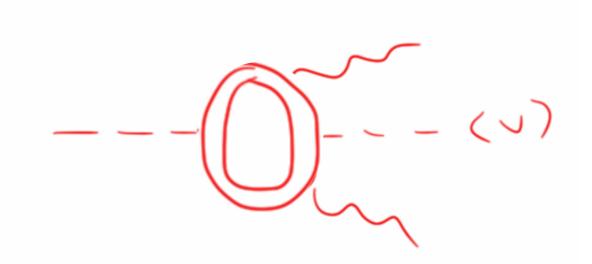
see e.g. Low, Vichi, Rattazzi

The hierarchy problem...



... motivates deviations in

... but we actually measure:



see e.g. Low, Vichi, Rattazzi

 $\propto \lim_{p \to 0} |\mathrm{SM} + \mathrm{NP}|^2$

Inclusive Higgs

$$\mathcal{O}_t = \frac{y_t}{v^2} |H|^2 \bar{Q}_L \tilde{H} t_R, \qquad \mathcal{O}_g = \frac{\alpha_s}{12\pi v^2} |H|^2 G^a_{\mu\nu} G^{a\,\mu\nu},$$

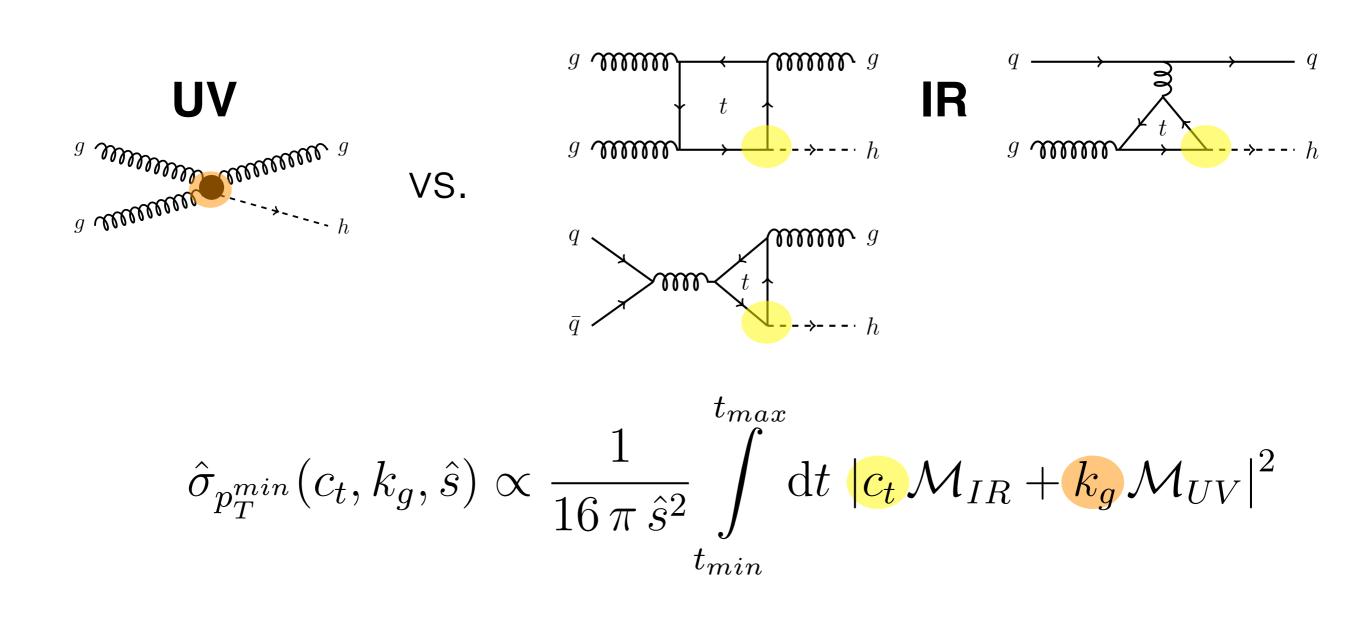
$$\mu_{\text{incl}}(c_t, k_g) = \frac{\sigma_{\text{incl}}^{\text{BSM}}(c_t, k_g)}{\sigma_{\text{incl}}^{\text{SM}}} = (c_t + k_g)^2$$

Precision only : a degenerate direction!

Composite Higgs predicts:

$$c_t \approx -k_g$$

Use Energy: p₇(H)



$$t_{max}^{min} = \frac{1}{2} \left(m_h^2 - \hat{s} \mp \sqrt{m_h^4 - 2\,\hat{s}\,(m_h^2 + 2\,(p_T^{min})^2) + \hat{s}^2} \right)^2$$

Grojean, Schlaffer, Salvioni, AW

Grojean, Schlaffer, Salvioni, AW

$$\frac{\sigma_{p_T^{min}}(c_t, k_g)}{\sigma_{p_T^{min}}^{SM}} = (c_t + k_g)^2 + \delta c_t k_g + \kappa k_g^2$$

$$\frac{\sigma_{p_T^{min}}(c_t, k_g)}{\sigma_{p_T^{min}}^{Sm}(c_t, k_g)} = \int_{s_{min}/s}^{1} d\tau \mathcal{L}_{part}(\tau) \hat{\sigma}_{p_T^{min}}(c_t, k_g, \tau s)$$

$$resolve UV vs IR$$

$$resolve UV vs IR$$

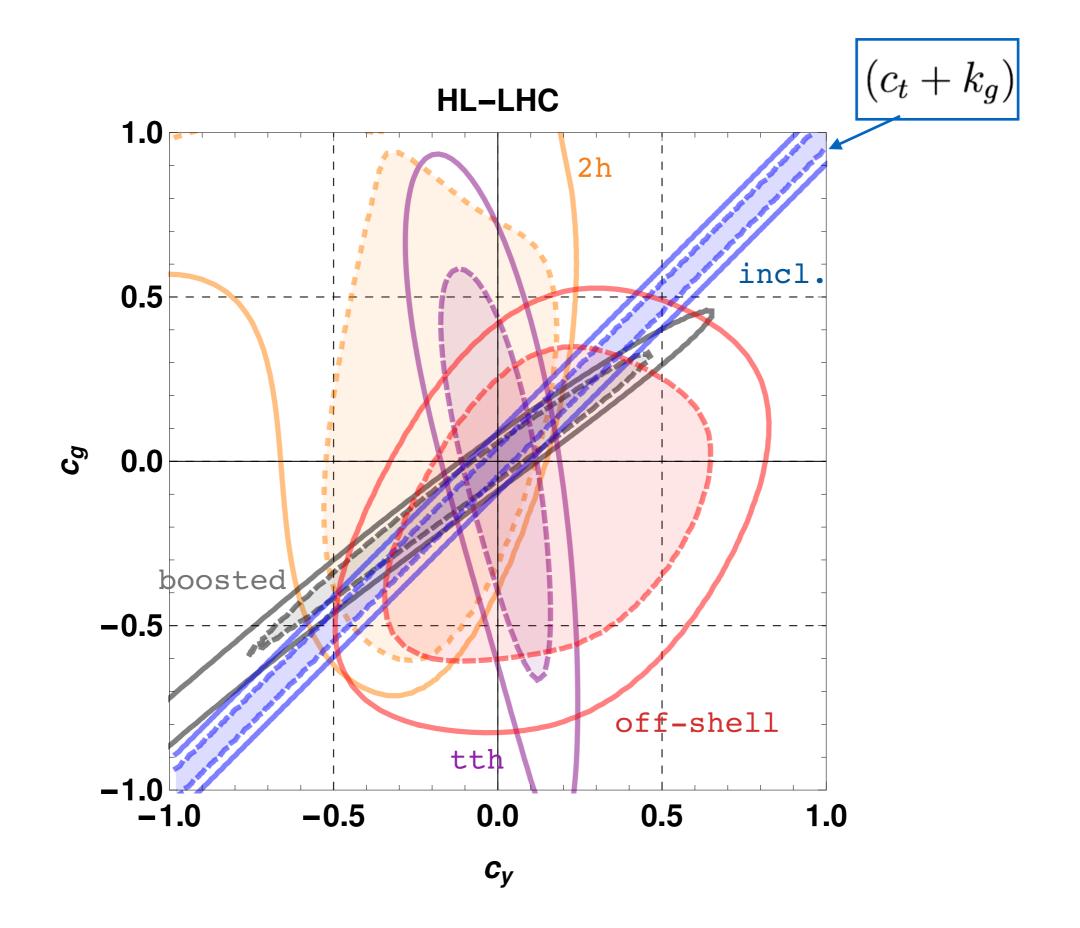
$$\frac{\sigma_{p_T^{min}}(c_t, k_g)}{\sigma_{p_T^{min}}(c_t, k_g, \tau s)} = \int_{s_{min}/s}^{1} d\tau \mathcal{L}_{strophy}(\tau) \hat{\sigma}_{strophy}(\tau) \hat{\sigma}_{strophy}(\tau)$$

800

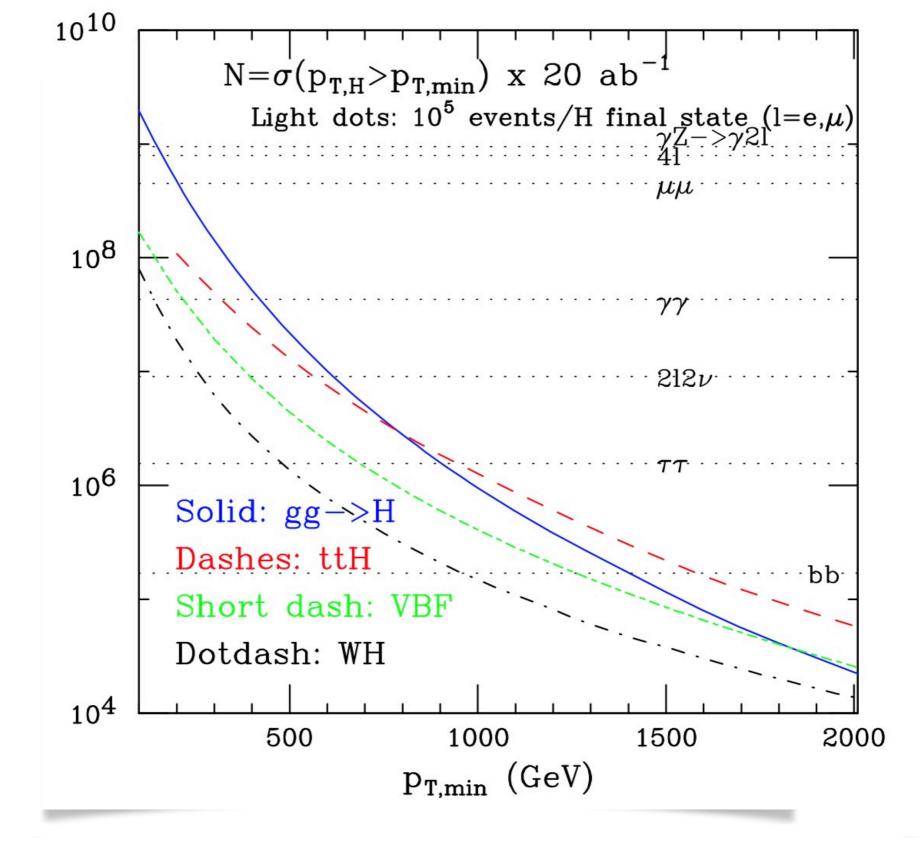
0.37

3.7

8.4



Updated version of: Azatov, Grojean, Paul, Salvioni '16



Lesson: Hierarchy of production channels changes at large $p_T(H)$:

- $\sigma(ttH) > \sigma(gg \rightarrow H)$ above 800 GeV
- $\sigma(VBF) > \sigma(gg \rightarrow H)$ above 1800 GeV

slide by M. Mangano

Probing the heart of EWSB with $\sigma(pp \rightarrow hh)$

Higgs self-interaction

$${}^{_{H}=\frac{1}{\sqrt{2}}\binom{0}{v+h}} \bigvee V_{\rm SM} = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

$$V_{\rm SM} = \frac{m_h^2}{2} h^2 + \lambda_3 v h^3 + \lambda_4 h^4$$

SM predicts:

$$\lambda_3^{\rm SM} = m_h^2/(2v^2) \approx 0.13$$

$$\lambda_4^{\rm SM} = m_h^2/(8v^2) \approx 0.03$$

Higgs self-interaction

$${}^{_{H}=\frac{1}{\sqrt{2}}\binom{0}{v+h}} \bigvee V_{\rm SM} = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

$$V_{\rm SM} = \frac{m_h^2}{2} h^2 + \lambda_3 v h^3 + \lambda_4 h^4$$

SM predicts:

no need to measure this in absence of BSM

$$\lambda_3^{\rm SM} = m_h^2/(2v^2) \approx 0.13$$

$$\lambda_4^{\rm SM} = m_h^2/(8v^2) \approx 0.03$$

Di-Higgs production

	HL-LHC	$HE-LHC_3$	HE-LHC ₁₅	FCC ₃
\sqrt{s} (TeV)	14	27	27	100
$L\left(\mathrm{ab}^{-1}\right)$	3	3	15	3
$\sigma_{hh} (\mathrm{fb})$	40.2	162	162	1640
N_{hh}	$1.2 \cdot 10^5$	$4.9\cdot 10^5$	$2.4 \cdot 10^{6}$	$4.9 \cdot 10^{6}$

hard possible easy-ish?

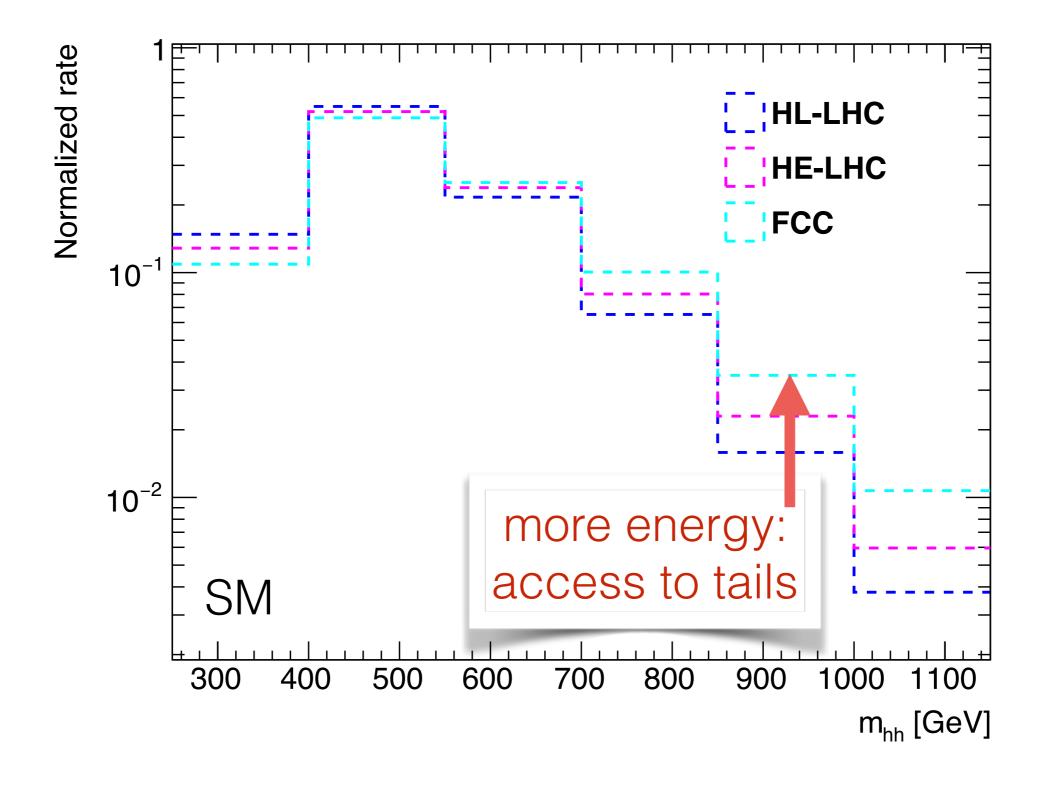
Di-Higgs production

	HL-LHC	HE-LHC ₃	HE-LHC ₁₅	FCC ₃
\sqrt{s} (TeV)	14	27	27	100
$L\left(\mathrm{ab}^{-1}\right)$	3	3	15	3
$\sigma_{hh} (\mathrm{fb})$	40.2	162	162	1640
N_{hh}	$1.2 \cdot 10^5$	$4.9 \cdot 10^{5}$	$2.4 \cdot 10^{6}$	$4.9 \cdot 10^{6}$

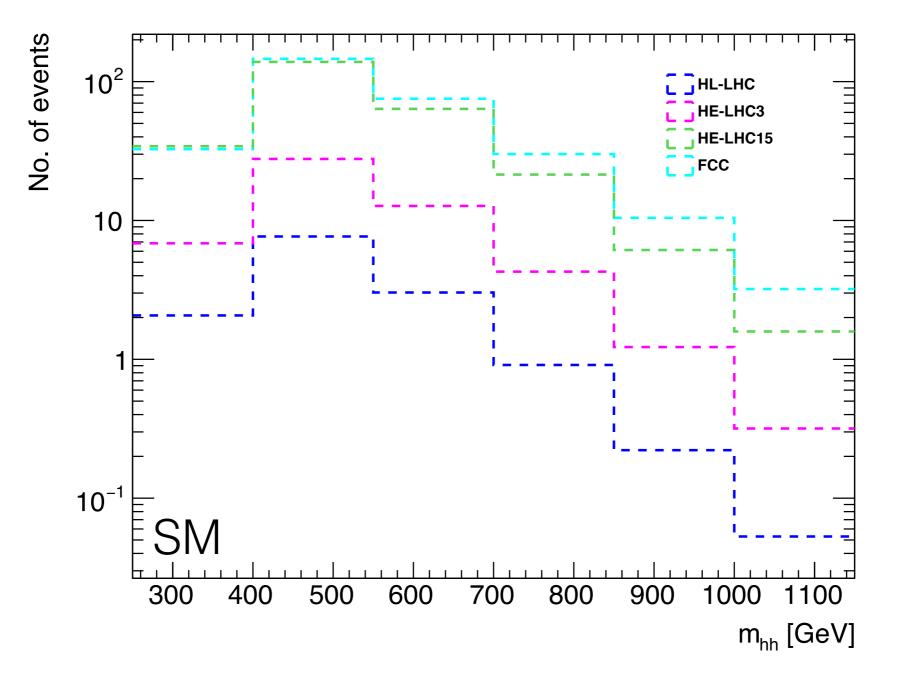
hard possible easy-ish?

How well does HE-LHC₂₇ compared to FCC₁₀₀?

m_{hh} distribution (normalized)

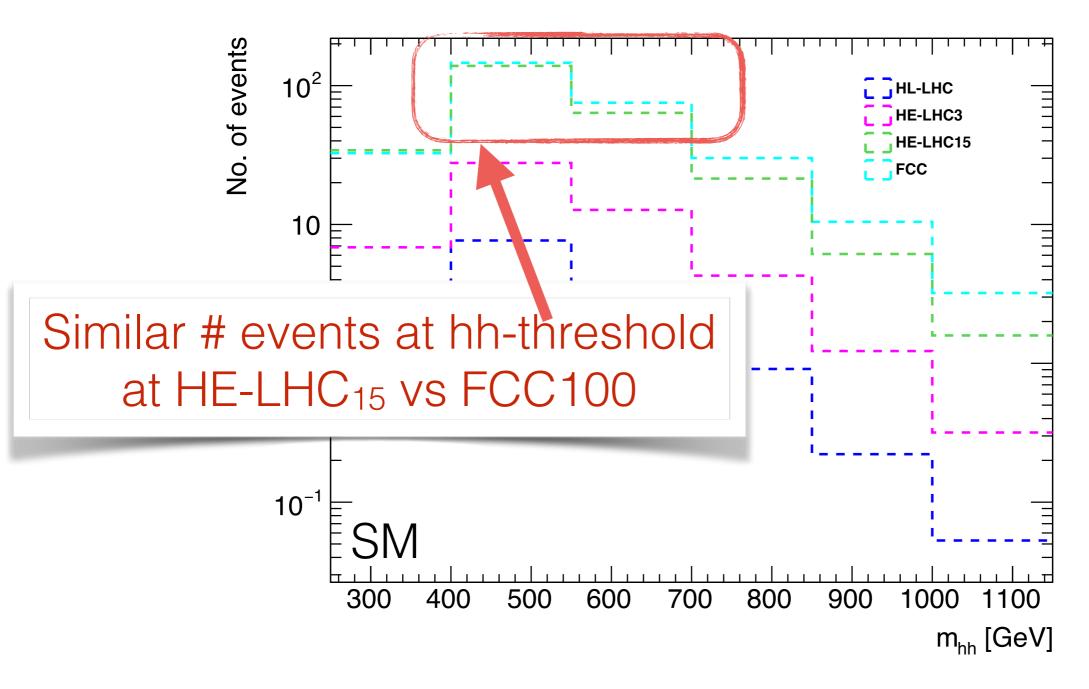


m_{hh} distribution



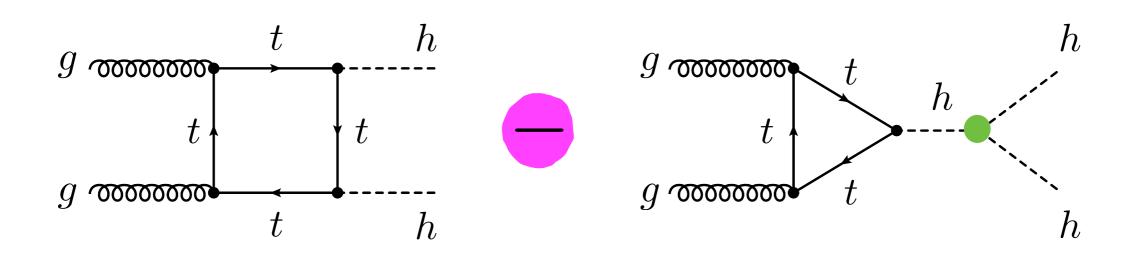
Liew, Sakurai, Salvioni, AW

m_{hh} distribution



Liew, Sakurai, Salvioni, AW

Anatomy of hh production

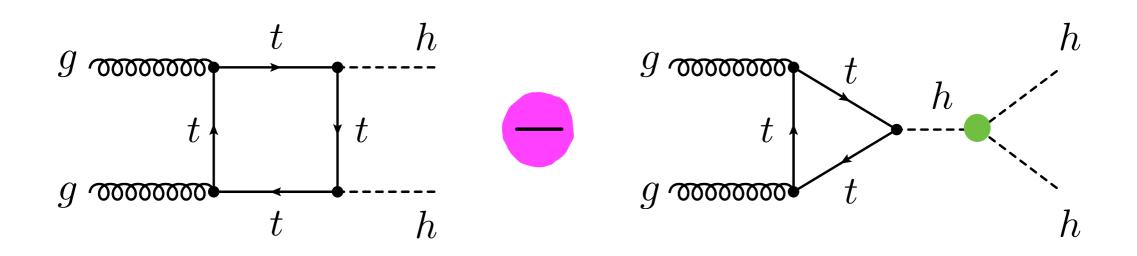


$$R = \frac{\sigma(pp \to hh)}{\sigma(pp \to hh)_{\rm SM}} = 2.1 - 10.8\lambda + 17.2\lambda^2$$

$$R = 1 \implies \lambda_{1,2} = \{\lambda_{\rm SM}, 3.8\lambda_{\rm SM}\}$$

talk by U. Haisch at EWMoriond17

Anatomy of hh production

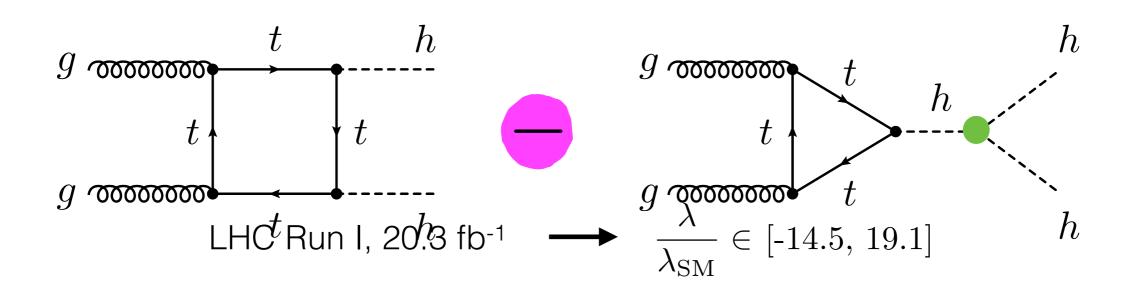


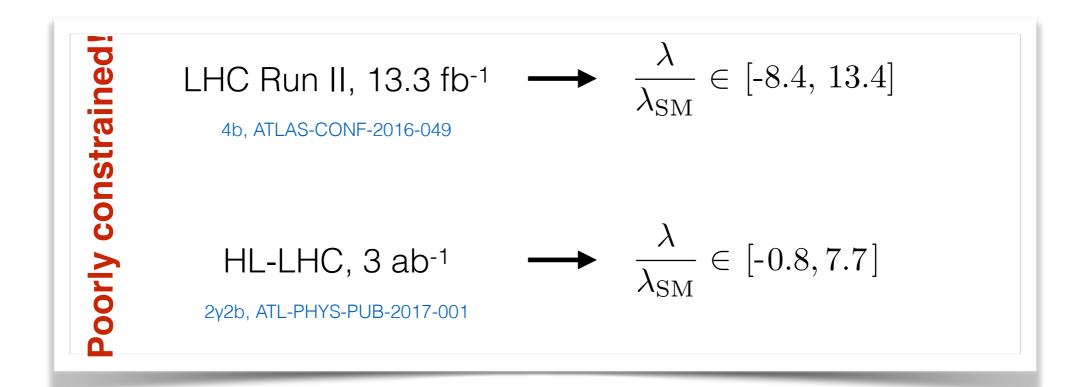
$$R = \frac{\sigma(pp \to hh)}{\sigma(pp \to hh)_{\rm SM}} = 2.1 - 10.8\lambda + 17.2\lambda^2$$

$$R = 1 \implies \lambda_{1,2} = \{\lambda_{\rm SM}, 3.8\lambda_{\rm SM}\}$$

talk by U. Haisch at EWMoriond17, interesting indirect limits: many authors

Anatomy of hh production





talk by U. Haisch at EWMoriond17, interesting indirect limits: many authors

- No BSM: modifying self-coupling clearly makes little sense.
- BSM: modifying only self-coupling not generic, expect effects in other couplings.

Use EFT!

EFT contribution

$$\Delta \mathcal{L}_{6} \supset \frac{\overline{c}_{H}}{2v^{2}} \partial_{\mu} (H^{\dagger}H) \partial^{\mu} (H^{\dagger}H) + \frac{\overline{c}_{u}}{v^{2}} y_{t} H^{\dagger}H (\overline{q}_{L}\widetilde{H}t_{R} + \text{h.c.}) - \frac{\overline{c}_{6}}{v^{2}} \frac{m_{h}^{2}}{2v^{2}} (H^{\dagger}H)^{3} + \overline{c}_{g} \frac{g_{s}^{2}}{m_{W}^{2}} H^{\dagger}H G_{\mu\nu}^{a} G^{a\,\mu\nu} ,$$

$$\mathcal{L}_{\text{nonlinear}} \supset -m_t \,\overline{t}t \left(c_t \frac{h}{v} + \frac{c_{2t}}{v^2} \frac{h^2}{v^2} \right) - c_3 \frac{m_h^2}{2v} \, h^3 + \frac{g_s^2}{4\pi^2} \left(c_g \frac{h}{v} + c_{2g} \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{a\,\mu\nu} \,,$$

$$c_t = 1 - \frac{1}{2}(\overline{c}_H + 2\overline{c}_u), \quad c_{2t} = -\frac{1}{2}(\overline{c}_H + 3\overline{c}_u), \quad c_3 = 1 - \frac{3}{2}\overline{c}_H + \overline{c}_6, \quad c_g = c_{2g} = \overline{c}_g\left(\frac{4\pi}{\alpha_W}\right)$$

Focus on $hh \to \gamma \gamma b \bar{b}$

 $p_T^{b_1}, p_T^{\gamma_1} > 50 \text{ GeV}, \quad p_T^{b_2}, p_T^{\gamma_2} > 30 \text{ GeV},$ $\Delta R(b, b) < 2, \quad \Delta R(\gamma, \gamma) < 2, \quad \Delta R(b, \gamma) > 1.5, \quad (\text{HL-LHC, HE-LHC})$ $105 \text{ GeV} < m_{bb}^{\text{reco}} < 145 \text{ GeV}, \quad 120 \text{ GeV} < m_{\gamma\gamma}^{\text{reco}} < 130 \text{ GeV}.$

$m_{hh}^{ m reco} \ [{ m GeV}]$	250-400	400-550	550-700	700-850	850-1000	1000-
hh	6.79	28.3	12.7	3.82	1.16	0.63
$\gamma\gamma b\overline{b}$	13.3	18.1	3.95	2.38	1.57	0.81
$t \overline{t} h$	9.89	22.8	7.7	1.85	0.56	0.22

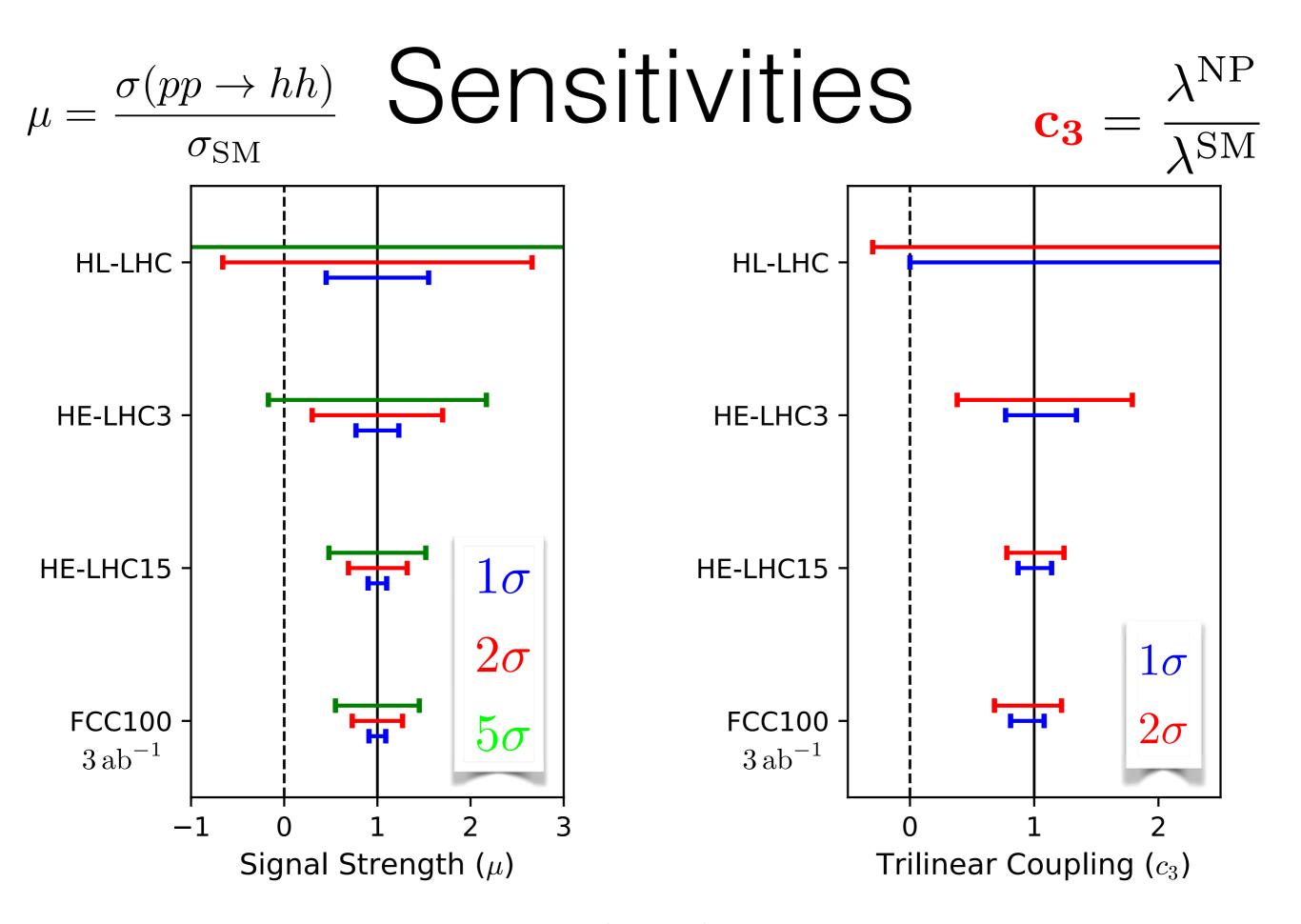
TABLE II: Expected numbers of signal and background events at $\sqrt{s} = 27 \text{ TeV}$ assuming an integrated luminosity $L = 3 \text{ ab}^{-1}$. The last category is inclusive.

$$R = \frac{\sigma(pp \to hh)}{\sigma(pp \to hh)_{\rm SM}} = 2.1 - 10.8\lambda + 17.2\lambda^2$$

Parametrisation as in Azatov et al

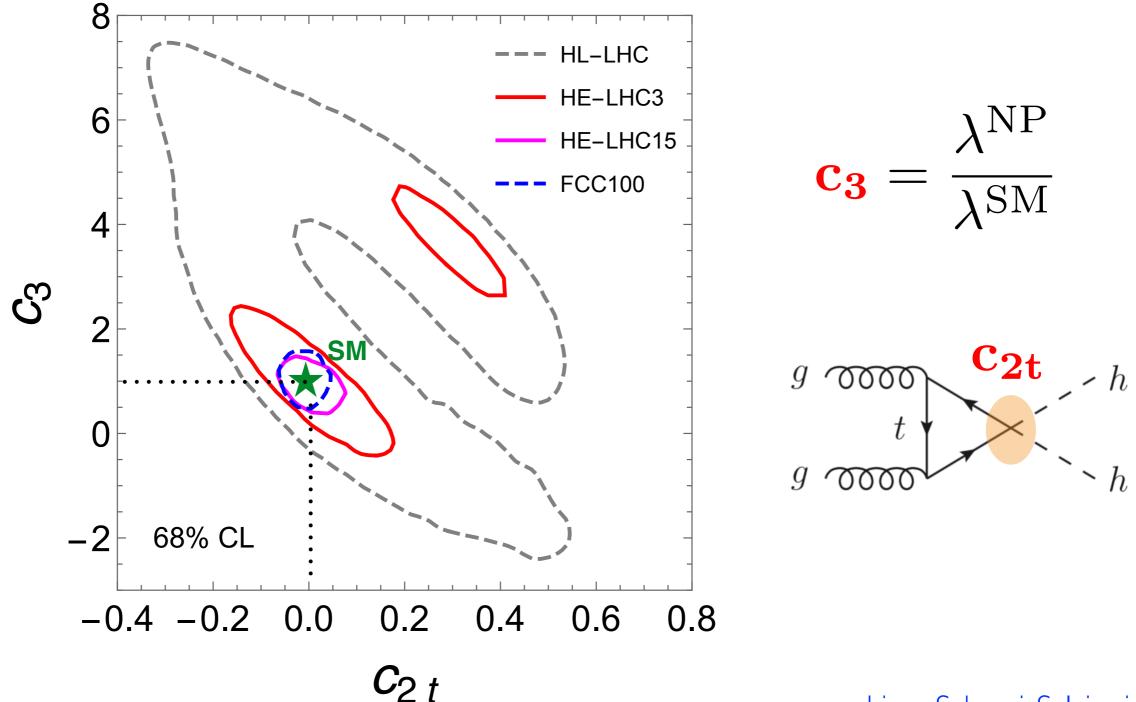
$$\sigma = \sigma_{\rm SM} \left[A_1 c_t^4 + A_2 c_{2t}^2 + A_3 c_t^2 c_3^2 + A_4 c_g^2 c_3^2 + A_5 c_{2g}^2 + A_6 c_{2t} c_t^2 + A_7 c_t^3 c_3 + A_8 c_{2t} c_t c_3 + A_9 c_{2t} c_g c_3 + A_{10} c_{2t} c_{2g} + A_{11} c_t^2 c_g c_3 + A_{12} c_t^2 c_{2g} + A_{13} c_t c_3^2 c_g + A_{14} c_t c_3 c_{2g} + A_{15} c_g c_3 c_{2g} \right].$$

Rate	SM	A_1	A_2	A_3	A_4	A_5	A_6	A_7	HE-LHC (27 TeV)
inclusive	162 fb	2.04	10.5	0.24	19.0	228	-8.47	-1.28	
after-cut	17.8 ab	1.76	9.99	0.13	6.19	161	-7.54	-0.90	
Rate	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}	A_{15}	
inclusive	2.75	19.1	56.6	-9.31	-19.3	3.58	9.60	91.9	
after-cut	1.99	11.5	41.6	-4.17	-18.5	1.12	9.90	50.2	Liew, Sakurai, Salvioni, AV

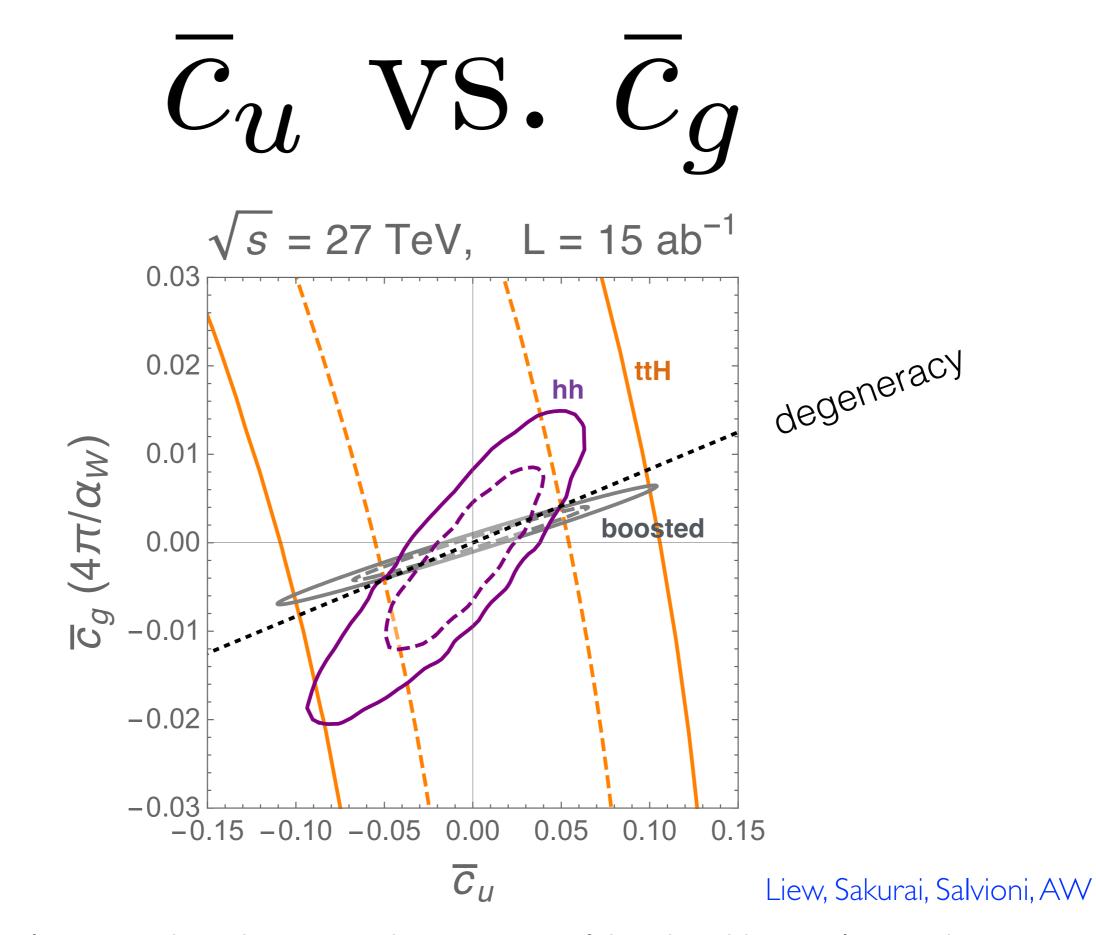


Liew, Sakurai, Salvioni, AW, see also Azatov et. al + many more

Higgs self-coupling vs. $\bar{t}thh$

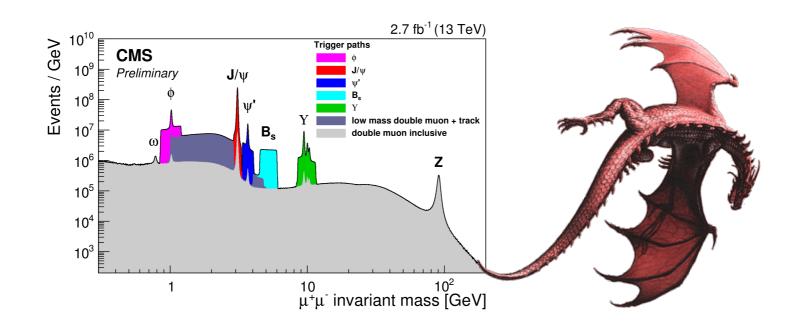


Liew, Sakurai, Salvioni, AW

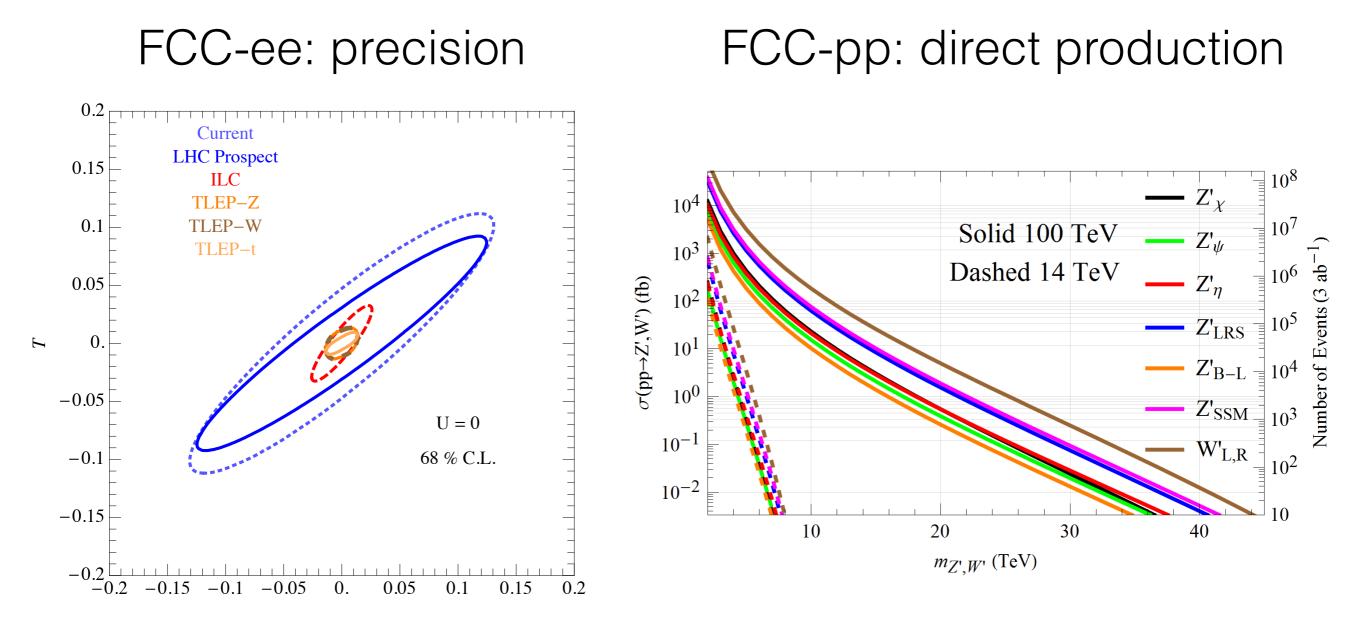


tth exclusions are based on a 10% determination of the tth(\rightarrow bb) signal strength

Catching the tails of EW resonances

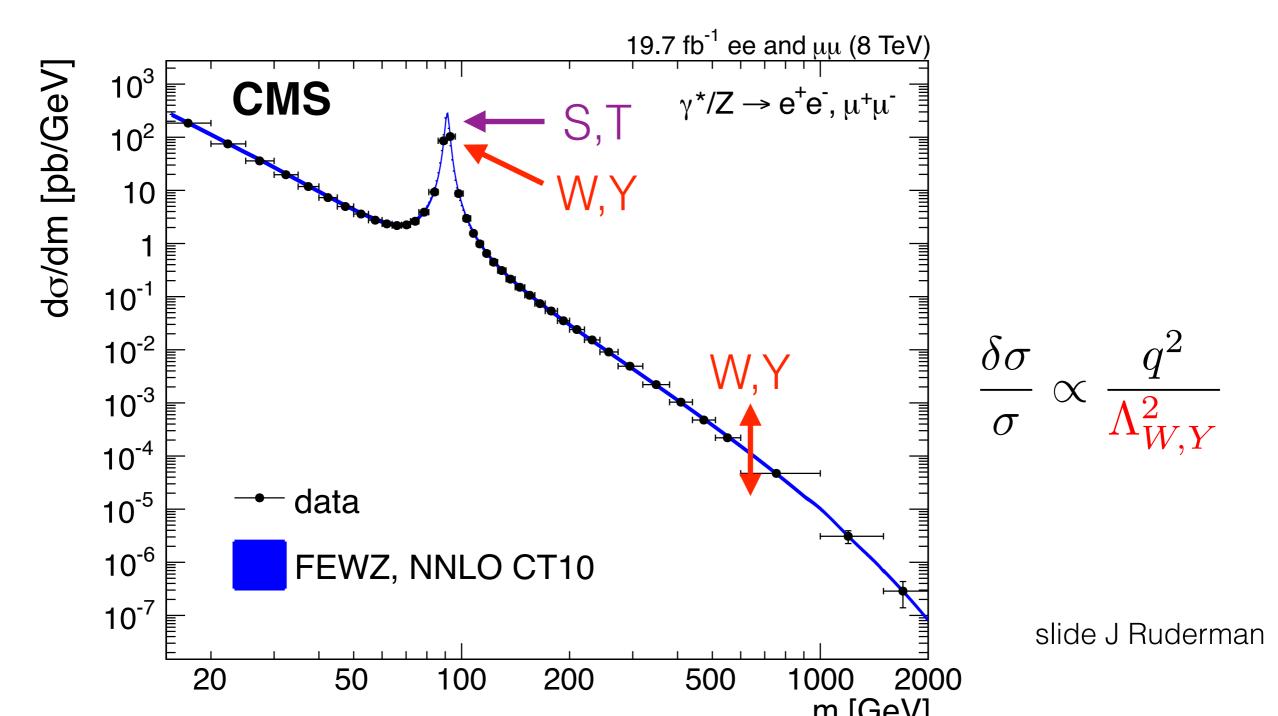


Conventional wisdom: Indirect vs. direct



Precision tests at FCC₁₀₀

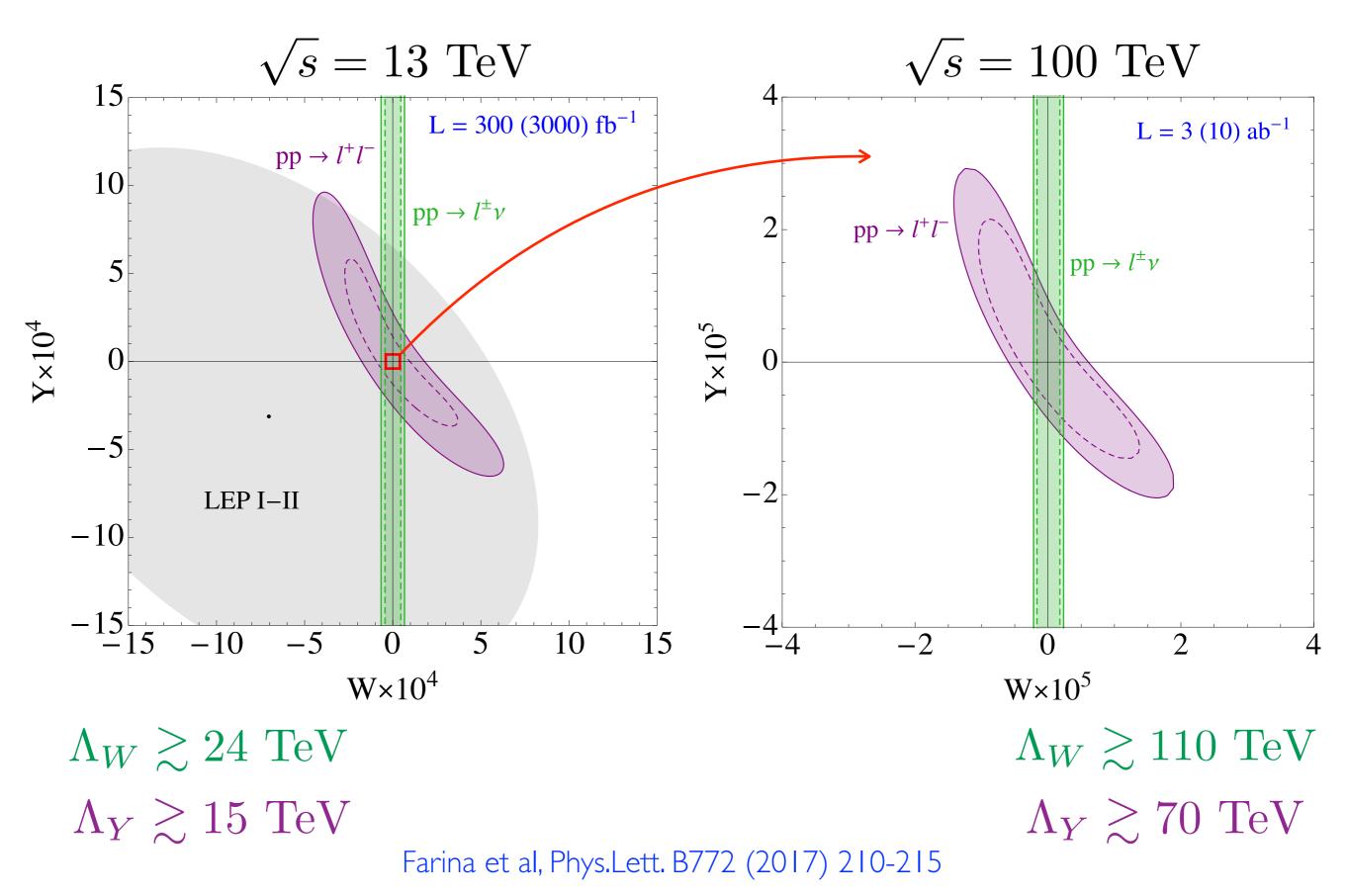
 $\mathcal{L} \supset \frac{1}{\Lambda_{\mathcal{C}}^2} H^{\dagger} W_{\mu\nu} H B_{\mu\nu} + \frac{1}{\Lambda_{\mathcal{T}}^2} |H^{\dagger} D_{\mu} H|^2 + \frac{1}{\Lambda_{\mathcal{W}}^2} (D_{\rho} W^a_{\mu\nu})^2 + \frac{1}{\Lambda_{\mathcal{V}}^2} (\partial_{\rho} B_{\mu\nu})^2$



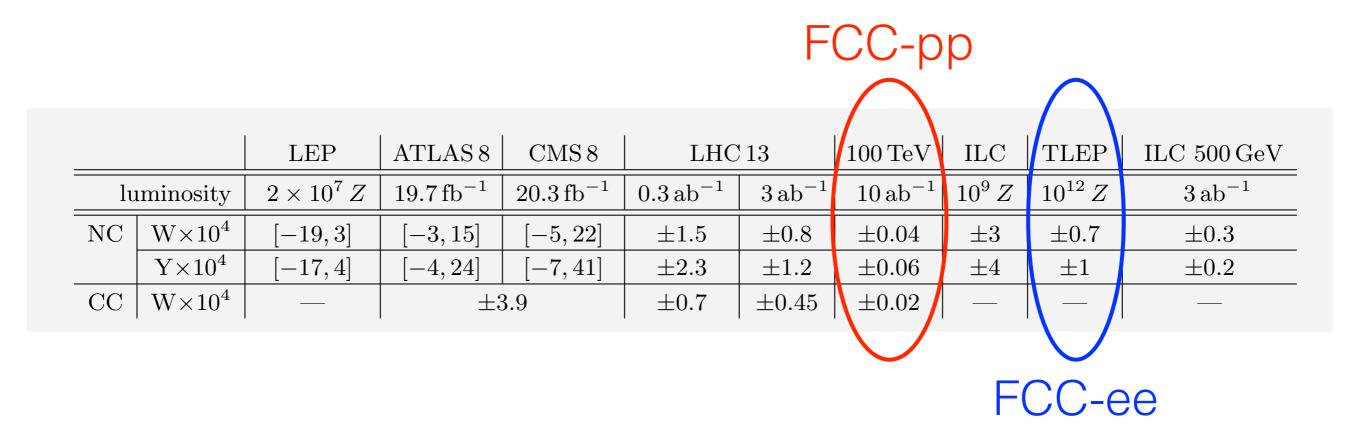
Oblique Parameters slide J Rudermar								
V_i $\mathcal{N} \mathcal{N} \mathcal{N}_j$ $V=\gamma, Z, W^{\pm}$								
$\Pi_{V_i V_j}(q^2) = \Pi_{V_i V_j}(0) + q^2 \Pi'_{V_i V_j}(0) + \frac{1}{2} q^4 \Pi''_{V_i V_j}(0) + \dots$								
form factor	operator	parameter						
$\Pi'_{W_3B}(0)$	$\frac{1}{\Lambda_S^2} H^{\dagger} W_{\mu\nu} H B_{\mu\nu}$	$S = -\frac{16\sin(2\theta_W)}{g^2\alpha}\frac{m_W^2}{\Lambda_S^2}$						
$\Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0)$	$\frac{1}{\Lambda_T^2} H^\dagger D_\mu H ^2$	$T = -\frac{2}{g^2 \alpha} \frac{m_W^2}{\Lambda_T^2}$						
$\Pi_{W_3W_3}^{\prime\prime}(0)$	$\frac{1}{\Lambda_W^2} (D_\rho W^a_{\mu\nu})^2$	$W = -4 rac{m_W^2}{\Lambda_W^2}$						
$\Pi_{BB}^{\prime\prime}(0)$	$rac{1}{\Lambda_Y^2} (\partial_ ho B_{\mu u})^2$	$Y = -4 \frac{m_W^2}{\Lambda_Y^2}$						

- Peskin, Takeuchi 1990
- Barbieri, Pomarol, Rattazzi, Strumia hep-ph/0405040

Future W/Y Reach



comparing colliders



Farina et al, Phys.Lett. B772 (2017) 210-215

Conclusions

- High-E machines can probe deep into the heart of EWSB, systematic approach via EFT
- HE-LHC can reach interesting pp -> hh benchmark
- Precision tests can catch new physics at its tail

Conclusions

- High-E machines can probe deep into the heart of EWSB, systematic approach via EFT
- HE-LHC can reach interesting pp -> hh benchmark
- Precision tests can catch new physics at its tail

