
Tracking Meeting ~ July, 7th 2017

Giulia Casarosa

SVD RECONSTRUCTION
DESIGN

PROPOSAL & PLANS

Notes P. Kvasnicka, 07/07/2017

Giulia Casarosa 20170707

➡ We have implemented a basic design that has been working well up to now, it allows to
reconstruct data from the test beams

➡ Peter’s pull request includes improvements in the reconstruction, and more improvements are
needed (e.g. calibration) → the design of the reconstruction needs a critical revision

Current Design of the Reconstruction

2

from SVD Offline SW Confluence Page

https://confluence.desy.de/display/BI/SVD+Offline+Software

Proposal - July, 5th

3

larger version:
here on Confluence

https://confluence.desy.de/display/BI/Proposed+SVD+Reconstruction+Data+Flow

short m_eventTimeBin

daqMode m_mode

We actually don't need this to be a module - it may be

a dbObject! providing a time fitting service.

separate object, must not depend on DAQ mode!!!

This is no-no:

such separation breeds

code duplication; we

don't need a separate

object at all here.

Can't we just have a RelationArray<SVDCluster, SVDCluster>

for this puroose? Or a similar structure where we can ask which are possible v-partners to my u-cluster?

Create functional dbObjects

- select fitter object based

on DAQ mode (zero-sup

3 or 6 samples, transparent)

Services can be tested more

easily than modules - even

outside of basf2.

Unpacking & WaveForm Fit
→ new Objects: SVDEventInfo
SVDShaperOutput (ex SVD6Digit)

larger version:
here on Confluence 4

Calibrations

Clusterizer

Space Point Creator delivers
SVDSpacePoints to Tracking

 correction to RecoHits,
informations on dE/dx …

https://confluence.desy.de/display/BI/Proposed+SVD+Reconstruction+Data+Flow

Giulia Casarosa 20170707

Comments & Concerns

5

➡ Regarding Peter’s pull request we agreed on splitting it into smaller
pull requests

➡ Regarding the proposed design:

1. agreement on the fact that having one module to perform one well-defined task
improves software development (parallel work, smaller pull requests, easier
debugging, …)

2. agreement on the fact that it allows to test different algorithms for the same tasks
(e.g. time determination algorithm)

3. Peter suggests to change the name of the proposed object SVDShaperOutput into
SVD<something>Digit (ideas: SVDWakeDigit, SVDSampledDigit, …?)

4. Eugenio suggests to create another object containing the result of the time
determination (time and PDF) and use relations to connect it to the
SVD<something>Digit

5. Eugenio pointed out that the split of SVDCluster StoreArray into two StoreArrays,
one for P and one for N clusters, would require to double the relations. Moreover
Peter is not in favour of this change, therefore I would cancel this proposed change
from the proposal

With reservations: splitting modules is NOT the only and not the

most efficient way to achieve this.

Algorithms can be switched using module parameters. No need of a separate module.

OK

Giulia Casarosa 20170707

Comments and Concerns Cont.’d

6

6. Andrzej expressed the following concerns, quoted from his email:

• “the proposal introduces objects which would have different contented in function
of previously called modules (unpacker + time fitter), even if this is allowed in
Belle2 (I don't think so), it is a bad practice and should be avoided,”

• “it increase the data size few times (estimate depends on how many bins we
would need for time PDFs),”

• “In my opinion, unfortunately it would add additional delays. I remind everyone that
if we want to be ready for rev 10, we would need both time fitter and calibration in
main branch by August/September. The Rev. 10 would be the one used on the
Beast Phase 2 “

• his idea is that the new objects should be “treated as internal temporary objects
created at the stage of clusterizing and should be deleted afterward and should not
replace SVDDigit used in many place in software also outside of the tracking group
scope”

SVDDigits are not that important or widely used, and can be modified

without much pain, but it has to be done carefully. But it won't be a good idea to have an additional dataobject, or make SVDDigits bulky.

Giulia Casarosa 20170707

Goals and Tentative plan

7

The goal is to have the hit time determination (and the calibration) in release-01-00-00

I II III IV V

July

Aug

Sept

week
month

SVDxxxDigit
Digitizer

hit time determin.
outside cluserizer

validation…

validation… validation…

validation…
impact on
tracking

filtered clusters

Unpacker
6-samples

validation…

validation… Unpacker,
3-samples

validation… validation…

validation…

impact on
tracking

SVD Space Point
Creator

calib. interface
implemented

simulation VS
testbeam data

how do we apply the calibration?
first we have to converge on the design

validation…

simulation VS
testbeam data

simulation VS
testbeam data

calibration of
the simulation

validation…

Giulia Casarosa 20170707

First Pull Request

8

➡ I propose the following:

• Rename of the SVD6Digit into SVDxxxDigit, keep Peter’s design of this object except
for the addition of the trigger timing information

• Include the Splitter (and Merger?) module to convert: SVDDigit � SVDxxxDigit

• Unpacker and Digitizer should produce SVD<something>Digit in addition to the
SVDDigit

• Unpacker should add the information of the trigger timing into the
SVD<something>Digit; this information is stored in the header of the payload

➡ This will allow to:

• Validate the SVDxxxDigits against the SVDDigits

• Keep exactly the current steering files with no modifications

• Immediately start the validation of the simulation of the time structure of the APV
response against TB data. Since the NN is trained on simulation, this is critical.

No. SVDEventInfo is the logical place to store information about event time.

I don't see how this is true.

In dozens of basf2 steering

scripts, we will have to insert a converter module

between the digitizer and

clusterizer.

Giulia Casarosa 20170707

Why Redesigning the Code

10

➡ true for SVD reconstruction in release-00-09-00

➡ ok, but why?

1. it’s good practice

2. maintainability of the code in the future is easier (remember VXDTF…)

3. debugging of the code is easier

4. smaller and easier-to-review pull requests

5. the split of tasks in different modules, allows parallel developments (but the
interfaces must be decided and agree before starting to write code!!)

6. documentation is easier to write and to read

7. implementation of alternative reconstruction methods in the future will be a
non-traumatic (for the code) and much easier to manage and configure

each module performs one single and well defined task

