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Top Quark

With a mass of mt = 173.34± 0.76 GeV (March 2014), the TOP quark (the up-type quark

of the third generation) is the heaviest elementary particle produced so far at colliders

Because of its mass, top quark plays a unique role in understanding the EW symmetry

breaking ⇒ top physics is crucial at the LHC

The top quark is produced (@ hadron colliders) via two mechanisms

pp(p̄) → tt̄
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Single Top

The top quark plays a double role: signal or background for new physics

Top quark does not hadronize, since it decays in about 5 · 10−25s (one order of magnitude

smaller than the hadronization time) =⇒ opportunity to study the quark as single particle

Spin properties

Interaction vertices

Top quark mass

Decay products: almost exclusively t→W+b (|Vtb| ≫ |Vtd|, |Vts|)
b

W+

t
Vtb
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Top Quark: Event Selection

Top Pair events

σTevatron

tt̄
∼ 7pb

σLHC8

tt̄
∼ 250pb [ pp̄(p) → tt̄ → W+bW−b̄ → lνlνbb̄

pp̄(p) → tt̄ → W+bW−b̄ → lνqq̄′bb̄

pp̄(p) → tt̄ → W+bW−b̄ → qq̄′qq̄′bb̄
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Top Quark: Event Selection

Top Pair events

gg fusion ∼ 15%
Tevatron

qq̄ annihilation ∼ 85%

gg fusion ∼ 90%
LHC

qq̄ annihilation ∼ 10%{
{

σTevatron

tt̄
∼ 7pb

σLHC8

tt̄
∼ 250pb [ pp̄(p) → tt̄ → W+bW−b̄ → lνlνbb̄

pp̄(p) → tt̄ → W+bW−b̄ → lνqq̄′bb̄

pp̄(p) → tt̄ → W+bW−b̄ → qq̄′qq̄′bb̄

Dilepton ∼ 10%

Lep+jets ∼ 44%

All jets ∼ 46%

2 high-pT lept, ≥ 2 jets and ME

1 isol high-pT lept, ≥ 4 jets and ME

NO lept, ≥ 6 jets and low ME
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Top Quark: Background
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Top Quark: Background

Background Processes
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Top Quark: Background

Background Processes
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main bg for lepton+jets
main bg for all-jets

Note: background processes known theoretically at NLO and NNLO. Simulated for CDF and

D0 using Monte Carlo event generators (PYTHIA or HERWIG), normalized to the NLO cross

section ( for instance calculated with MCFM). For ATLAS and CMS using FEWZ, HATOR, and

as CDF+D0.

Background also evaluated using data-driven methods (for multi-jet bg).

In order to increase the signal-to-background ratio is crucial the tagging of the b jets (not

present in the background).
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Top Quark: tt̄ Cross Section

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 6/55



Top Quark: tt̄ Cross Section

Total tt̄-pair Cross Section σtt̄ =
Ndata −Nbkgr

ǫ L

Test for the SM (in particular QCD)

=1.96 TeVs cross section (pb) at t t→ pp

CDF dilepton -18.8 fb 0.83± 7.09 
 0.67± 0.49 ±         

CDF ANN lepton+jets -14.6 fb 0.56± 7.82 
 0.41± 0.38 ±         

CDF SVX lepton+jets -14.6 fb 0.71± 7.32 
 0.61± 0.36 ±         

CDF all-jets -12.9 fb 1.28± 7.21 
 1.18± 0.50 ±         

CDF combined  0.50± 7.63 
 0.39± 0.31 ±         

DØ dilepton -15.4 fb 0.85± 7.36 

DØ lepton+jets -15.3 fb 0.74± 7.90 

DØ combined  0.59± 7.56 
 0.56± 0.20 ±         

Tevatron combined
 = 172.5 GeVtm

 0.41± 7.60 
 0.36± 0.20 ±         

=1.96 TeVs cross section (pb) at t t→ pp
6 7 8 9

Tevatron Run II
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NNLO+NNLL QCD
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Combination CDF-D0 September 2013 (mt = 172.5 GeV)

σtt̄ = 7.60± 0.41pb (∆σtt̄/σtt̄ ∼ 5.4%) using up to 8.8 fb−1 of data
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Top Quark: tt̄ Cross Section

Total tt̄-pair Cross Section σtt̄ =
Ndata −Nbkgr

ǫ L

Test for the SM (in particular QCD)

ATLAS+CMS (mt = 172.5 GeV) @
√
s = 7TeV: σtt̄ = 173.3± 2.3± 7.6± 6.3pb

ATLAS in lepton+jets (mt = 172.5 GeV) @
√
s = 8TeV: σtt̄ = 260± 1+22

−23 ± 8 pb

CMS in lepton+jets (mt = 172.5 GeV) @
√
s = 13TeV: σtt̄ = 835± 3± 23± 23 pb
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Top Quark: tt̄ Cross Section

tt̄ cross section measurements in agreement with theoretical predictions at NNLO+NNLL
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Top Quark Mass
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Top Quark Mass

Top-quark Mass

Fundamental parameter of the SM. A precise

measurement has impacts on EW precision fits.

It was useful to constraint Higgs mass from

radiative corrections (∆r) before the direct

detection

World Combination: ATLAS, CDF, CMS, D0 (18 March 2014)

mt = 173.34± 0.27(stat)± 0.71(sys)GeV (0.44%)
 [GeV]topm

165 170 175 180 185
1

17

       LHC September 2013  0.88)± 0.26 ± (0.23  0.95±173.29 

       Tevatron March 2013 (Run I+II)  0.61)± 0.36 ± (0.51  0.87±173.20 
 prob.=93%2χ 
 / ndf =4.3/102χ World comb. 2014  0.67)± 0.24 ± (0.27  0.76±173.34 

-1 = 3.5 fbint   L

CMS 2011, all jets
 1.23)± (0.69             1.41±173.49 

-1 = 4.9 fbint   L

CMS 2011, di-lepton
 1.46)± (0.43             1.52±172.50 

-1 = 4.9 fbint   L

CMS 2011, l+jets
 0.97)± 0.33 ± (0.27  1.06±173.49 

-1 = 4.7 fbint   L

ATLAS 2011, di-lepton
 1.50)± (0.64             1.63±173.09 

-1 = 4.7 fbint   L

ATLAS 2011, l+jets
 1.35)± 0.72 ± (0.23  1.55±172.31 

-1 = 5.3 fbint   L

D0 RunII, di-lepton
 1.38)± 0.55 ± (2.36  2.79±174.00 

-1 = 3.6 fbint   L

D0 RunII, l+jets
 1.16)± 0.47 ± (0.83  1.50±174.94 

-1 = 8.7 fbint   L

+jetsmiss

T
CDF RunII, E

 0.86)± 1.05 ± (1.26  1.85±173.93 
-1 = 5.8 fbint   L

CDF RunII, all jets
 1.04)± 0.95 ± (1.43  2.01±172.47 

-1 = 5.6 fbint   L

CDF RunII, di-lepton
 3.13)± (1.95             3.69±170.28 

-1 = 8.7 fbint   L

CDF RunII, l+jets
 0.86)± 0.49 ± (0.52  1.12±172.85 

-1 - 8.7 fb-1 = 3.5 fb
int

 combination - March 2014,  LtopTevatron+LHC m
ATLAS + CDF + CMS + D0 Preliminary

)    syst.   iJES  stat.total    (P
re

v
io

u
s

C
o

m
b

.

In spite of the high precision is not totally clear which mass corresponds to the parameter

measured by Tevatron and LHC (matching using LO+LL MC, reconstruction of the final state,

hadronization modeling, bound-state effects near threshold ...). It is generally believed to be

“something near” the “pole mass”.

Partial solution: extraction from observables known with good th accuracy

However, top-quark pole mass is “physically” not well defined (although in pQCD it has a

precise meaning) due to non-PT effects: O(ΛQCD) ambiguity.

Possible solution: change mass definition: short-distance mass def (for instance MS)
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Top Quark Mass

Top-quark Mass from Theoretical σtt̄ calculations, using NLO, NLO+NNLL, and

approximate NNLO calculations (Tevatron)

Top quark pole mass (GeV)
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+X)t t→p(pσMeasured 
σMeasured dependence of 

Approximate NNLO

NLO+NNLL

Top quark pole mass (GeV)
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-1DØ, L=5.3 fb 

Th. prediction mpole
t (GeV) ∆mpole

t (GeV)

MC assumpt. mMC
t = mpole

t mMC
t = mMS

t

NLO 164.8+5.7
−5.4 −3.0

NLO+NLL 166.5+5.5
−4.8 −2.7

NLO+NNLL 163.0+5.1
−4.6 −3.3

Appr. NNLO1 167.5+5.2
−4.7 −2.7

Appr. NNLO2 166.7+5.2
−4.5 −2.8
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 mass (GeV)MSTop quark 
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 (
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)
ttσ

2
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-1DØ, L=5.3 fb 

Th. prediction mMS
t (GeV) ∆mMS

t (GeV)

MC assumpt. mMC
t = mpole

t mMC
t = mMS

t

NLO+NNLL 154.5+5.0
−4.3 −2.9

Appr. NNLO1 160.0+4.8
−4.3 −2.6

D0 Collaboration, Phys. Lett. B 703 (2011) 422
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Top Quark Mass

Same analysis done by CMS with Run I sample (7 TeV), constraining alternatively αS(MZ) to

be the world average getting mpolet and vice versa. They use NNLO+NNLL accuracy tt̄ cross

section.

 (GeV)pole
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 0.0007±) = 0.1184 
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2
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 1.4 GeV± = 173.2 pole
t; mttσ; NNLO+NNLL for -1 = 7 TeV, L = 2.3 fbsCMS, 

αS(mZ) = 0.1151+0.0033
−0.0032

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 728 (2014) 496
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Top Quark: other properties

Top-Anti Top Mass Difference

CDF ∆mt = −1.95 ± 1.11(stat) ± 0.59(syst) GeV with 8.7 fb−1.

D0 ∆mt = 0.8 ± 1.8 (stat) ± 0.5 (syst) GeV with 3.6 fb−1 .

CMS ∆mt = −0.44 ± 0.46(stat) ± 0.27(syst) GeV with 4.7 fb−1 @ 7 TeV.

ATLAS ∆mt = 0.67 ± 0.61(stat) ± 0.41(syst) GeV with 4.7 fb−1 @ 7 TeV.

Top-quark Width

CDF Γt = 2.21
+1.84
−1.11 GeV with 8.7 fb−1 .

D0 Γt = 2.00
+0.47
−0.43 GeV with 5.4 fb−1.

Top-quark Charge

Both at Tevatron and LHC 7, lepton+jets events compatible with the charge of the top of +2/3. Exotic top with

charge −4/3 is excluded at 99% CL.

W helicity fractions

Tevatron F0 = 0.722 ± 0.081 F+ = −0.033 ± 0.046

LHC 7 (CMS)

F0 = 0.682 ± 0.030 ± 0.033 F+ = 0.008 ± 0.012 ± 0.014 F− = 0.310 ± 0.022 ± 0.022

Ok with SM prediction at NNLO (A. Czarnecki, J. G. Körner, J. H. Piclum, Phys. Rev. D 81 (2010) 111503)
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Top Quark: AFB @ Tevatron

FB Asymmetry A
lab (or tt̄)
FB =

N(yt(or ∆y) > 0)−N(yt(or ∆y) < 0)

N(yt(or ∆y) > 0) +N(yt(or ∆y) < 0)

After years of discrepancy, the situation changed quite considerably in 2014.
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A FB

|∆Y|
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NLO
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D0 data are consistent with the SM prediction. CDF still has < 2σ discrepancy

M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 115 (2015) 5, 052001
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Top Quark: Charge asymmetries @ LHC

Charge Asymmetry

AC =
N(∆|y| > 0)−N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
∆|y| = |yt| − |yt̄|

and in dilepton events:

A
lep

C
=
N(∆|ηl| > 0)−N(∆|ηl| < 0)

N(∆|ηl| > 0) +N(∆|ηl| < 0)
∆|ηl| = |ηl+ | − |ηl− |

W. Bernreuther, Z. G. Si, Phys. Rev. D 86 (2012) 034026

J. H. Kuhn, G. Rodrigo, JHEP 1201 (2012) 063
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Top Quark: Distributions

Also differential distributions were studied at Tevatron and LHC

Invariant mass, top rapidity and pT distributions in tt̄ events, with 9.7 fb−1
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In very good agreement with the SM predictions
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Top Quark: Distributions

Also differential distributions were studied at Tevatron and LHC

Invariant mass, top rapidity and pT distributions in tt̄ events @ 8 TeV

Again, in very good agreement with the SM predictions
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Top Quark: searches for NP

Both @ Tevatron and @ LHC rich program of BSM searches in top quark evants:

New production mechanisms via new spin-1 or spin-2 resonances: qq̄ → Z′ → tt̄ in

lepton+jets and all hadronic events. Bumps in the invariant-mass distribution

(excluded vector resonances, Z′, with masses below ∼ 900 GeV and W ′ with masses

below ∼ 800 GeV @ 95% CL)

Top charge measurements (excluded exotic top-quark with Qt = −4/3 @ 99% CL)

Anomalous couplings

L = − g√
2
b̄

{

γµ(VLPL + VRPR) +
iσµν(pt − pb)ν

MW
(gLPL + gRPR)

}

tW−
µ

From helicity fractions

From asymmetries in the final state

Forward-backward asymmetry (now consistent with the SM prediction)

Non SM Top decays. Search for charged Higgs: t→ H+b → qq̄′b(τνb)

Search for heavy t′ →W+b in lepton+jets (recently excluded t′ with mt′ < 360 GeV and

b′ with mb′ < 385 GeV @ 95% CL)
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Theoretical Framework: pQCD
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Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions h1 + h2 → QQ̄+X

According to the FACTORIZATION THEOREM the process can be sketched as follows:

X

f(x1)

f(x2)

H.S.

h1{p}
Q

Q̄h2{p, p̄}

q, g

q̄, g

σh1,h2
=

∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2fh1,i(x1, µF )fh2,j(x2, µF ) σ̂ij (ŝ,mt, αs(µR), µF , µR)

s =
(
ph1

+ ph2

)2
, ŝ = x1x2s
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Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions h1 + h2 → QQ̄+X

According to the FACTORIZATION THEOREM the process can be sketched as follows:

X

f(x1)

f(x2)

H.S.

h1{p}
Q

Q̄h2{p, p̄}

q, g

q̄, g

σh1,h2
=

∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2fh1,i(x1, µF )fh2,j(x2, µF ) σ̂ij (ŝ,mt, αs(µR), µF , µR)

s =
(
ph1

+ ph2

)2
, ŝ = x1x2s

PDFs: Universal Part
Evolution with the factorization scale

predicted by the theory
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Theoretical Framework: pQCD

Let us consider the heavy-quark production in hadron collisions h1 + h2 → QQ̄+X

According to the FACTORIZATION THEOREM the process can be sketched as follows:

X

f(x1)

f(x2)

H.S.

h1{p}
Q

Q̄h2{p, p̄}

q, g

q̄, g

σh1,h2
=

∑

i,j

∫ 1

0

dx1

∫ 1

0

dx2fh1,i(x1, µF )fh2,j(x2, µF ) σ̂ij (ŝ,mt, αs(µR), µF , µR)

s =
(
ph1

+ ph2

)2
, ŝ = x1x2s

Partonic Cross Section
Process dependent part

Calculation in Perturbation Theory
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Partonic Cross Section: PT Expansion

σ̂QQ̄ij ∝
∣
∣
∣MQQ̄

ij

∣
∣
∣

2
=

∣
∣
∣MQQ̄

ij,0 + αSMQQ̄
ij,1 + α2

S MQQ̄
ij,2 + · · ·

∣
∣
∣

2

MQQ̄
qq̄ = + +

+ + · · ·

MQQ̄
gḡ = + +

+ + + · · ·

→
δij (−i 6k+m)

k2+m2−iǫ

→
δab

k2 − iǫ

→
δµν δab

k2 − iǫ

→ igStaij γµ

→ −igSfcabpµ

→ igSf
abc

[δµν (pσ−qσ)

+δνσ(qµ − kµ)

+δµσ(kν − pν )]

→ −g
2
S [f

gac
f
gbd

(2δµνδστ

−δµσδντ − δµτ δνσ)

+ · · ·

p

k

p− k

∝ αS

π

∫

d4k
tr{tatb} tr{γµ(−i 6k +m)γν [i( 6p− 6k) +m]}

(k2 +m2)[(p− k)2 +m2]
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Cross Section: LO (stable top)
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Cross Section: LO (stable top)

Top-Antitop production at leading order, partonic diagrams:

q(p1) + q̄(p2) −→ t(p3) + t̄(p4)

q

q̄ t

t̄

Dominant at Tevatron

∼ 85%

g(p1) + g(p2) −→ t(p3) + t̄(p4)

g

g t

t̄

Dominant at LHC

∼ 90%

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 15/55



Cross Section: NLO (stable top)

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 16/55



Cross Section: NLO (stable top)

Fixed Order

The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation to ±15%.

Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91;

Mangano, Nason, Ridolfi ’92; Frixione et al. ’95; Czakon and Mitov ’08.

Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. ’94 Bernreuther, Fuecker, and Si ’05-’08

Kühn, Scharf, and Uwer ’05-’06; Moretti, Nolten, and Ross ’06.
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Cross Section: NLO (stable top)

Fixed Order

The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation to ±15%.

Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91;

Mangano, Nason, Ridolfi ’92; Frixione et al. ’95; Czakon and Mitov ’08.

Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. ’94 Bernreuther, Fuecker, and Si ’05-’08

Kühn, Scharf, and Uwer ’05-’06; Moretti, Nolten, and Ross ’06.

The QCD corrections to processes involving at least two large energy scales

(ŝ,m2
t ≫ Λ2

QCD) are characterized by a logarithmic behavior in the vicinity of the

boundary of the phase space

σ ∼
∑

n,m

Cn,mα
n
S lnm (1− ρ) m ≤ 2n
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Cross Section: NLO (stable top)

Fixed Order

The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation to ±15%.

Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91;

Mangano, Nason, Ridolfi ’92; Frixione et al. ’95; Czakon and Mitov ’08.

Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. ’94 Bernreuther, Fuecker, and Si ’05-’08

Kühn, Scharf, and Uwer ’05-’06; Moretti, Nolten, and Ross ’06.

The QCD corrections to processes involving at least two large energy scales

(ŝ,m2
t ≫ Λ2

QCD) are characterized by a logarithmic behavior in the vicinity of the

boundary of the phase space

σ ∼
∑

n,m

Cn,mα
n
S lnm (1− ρ) m ≤ 2n

Inelasticity parameter
ρ =

4m2
t

ŝ
→ 1
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Cross Section: NLO (stable top)

Fixed Order

The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation to ±15%.

Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91;

Mangano, Nason, Ridolfi ’92; Frixione et al. ’95; Czakon and Mitov ’08.

Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. ’94 Bernreuther, Fuecker, and Si ’05-’08

Kühn, Scharf, and Uwer ’05-’06; Moretti, Nolten, and Ross ’06.

The QCD corrections to processes involving at least two large energy scales

(ŝ,m2
t ≫ Λ2

QCD) are characterized by a logarithmic behavior in the vicinity of the

boundary of the phase space

σ ∼
∑

n,m

Cn,mα
n
S lnm (1− ρ) m ≤ 2n

Inelasticity parameter
ρ =

4m2
t

ŝ
→ 1

Even if αS ≪ 1 (perturbative region) we can have at all orders αnS lnm (1− ρ) ∼ O(1)

Resummation =⇒ improved perturbation theory
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Cross Section: NLO (stable top)

Fixed Order

The NLO QCD corrections are quite sizable: + 25% at Tevatron and +50% at LHC.

Scales variation to ±15%.

Nason, Dawson, Ellis ’88-’90; Beenakker, Kuijf, van Neerven, Smith ’89-’91;

Mangano, Nason, Ridolfi ’92; Frixione et al. ’95; Czakon and Mitov ’08.

Mixed NLO QCD-EW corrections are small: - 1% at Tevatron and -0.5% at LHC.

Beenakker et al. ’94 Bernreuther, Fuecker, and Si ’05-’08

Kühn, Scharf, and Uwer ’05-’06; Moretti, Nolten, and Ross ’06.

All-order Soft-Gluon Resummation

Leading-Logs (LL)

Laenen et al. ’92-’95; Berger and Contopanagos ’95-’96; Catani et al. ’96.

Next-to-Leading-Logs (NLL)

Kidonakis and Sterman ’97; R. B., Catani, Mangano, and Nason ’98.

Next-to-Next-to-Leading-Logs (NNLL)

Moch and Uwer ’08; Beneke et al. ’09-’10; Czakon et al. ’09; Kidonakis ’09;

Ahrens et al. ’10; Cacciari-Czakon-Mangano-Mitov-Nason ’12
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Distributions (stable top)
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Distributions (stable top)

pp(p̄) → tt̄+ 1 jet

Important for a deeper understanding of the tt̄ prod

(possible structure of the top-quark)

Technically complex involving multi-leg NLO diagrams

σtt̄+j(LHC) = 376.2+17
−48 pb

σtt̄+j(Tev) = 1.79+0.16
−0.31 pb σCDF

tt̄+j
= 1.6± 0.2 (stat) ± 0.5 (syst) pb

pT,jet[GeV]
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2.0

1.5

1.0

0.5

K = NLO/LO
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√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
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) [
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]
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LO

NLO

√
s = 14TeV

pp → tt̄ + jet + X

(

dσ

dpT,jet

) [

fb
GeV

]

7006005004003002001000

1000

100

10

S. Dittmaier, P. Uwer and S. Weinzierl,

Phys. Rev. Lett. 98 (2007) 262002

Eur. Phys. J. C 59 (2009) 625

confirmed by G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys.Rev.Lett. 104 (2010) 162002

K. Melnikov and M. Schulze, Nucl.Phys. B840 (2010) 129-159
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Distributions (stable top)

Invariant mass and pT distributions in tt̄ events: NLO + resummed (SCET) NNLL

comparison with CDF and D0 data

NLO + NNLL

CDF data
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V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, JHEP 1009 (2010) 097

V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, JHEP 1109 (2011) 070
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Tools @ NLO

The corrections at NLO for the tt̄ (and single-top productions) are implemented in a series of

public codes

MCFM

J. M. Campbell, R. K. Ellis, Phys. Rev. D60 (1999) 113006

MC@NLO

S. Frixione, B. R. Webber, JHEP 0206 (2002) 029

POWHEG

S. Frixione, P. Nason, C. Oleari, JHEP 0711 (2007) 070
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NLO with decay Products: Fact. Corrections
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NLO with decay Products: Fact. Corrections

The calculations shown so far consider a stable top (anti-top) quark. Advantage:

reduction in the complexity of a NLO calculation

In “reality” the out states are leptons and hadrons =⇒ experiments put cuts on leptons

and hadrons. Desirable a description of the process in terms of actual out states
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NLO with decay Products: Fact. Corrections

The calculations shown so far consider a stable top (anti-top) quark. Advantage:

reduction in the complexity of a NLO calculation

In “reality” the out states are leptons and hadrons =⇒ experiments put cuts on leptons

and hadrons. Desirable a description of the process in terms of actual out states

Factorizable corrections do not mix production and decay stages!

lim
Γt/mt→0

1

(p2t −m2
t )

2 +m2
tΓ

2
t

=
π

mtΓt
δ(p2t −m2

t )

t

t̄

t

t̄

+O(Γt/mt)

Production Decay

The non-factorizable corrections do not decouple, but in sufficiently inclusive observables

they become small: ∼ O(Γt/mt) Fadin, Khoze, Martin ’94; Aeppli, van Oldenborgh, Wyler ’94; Melnikov,

Yakovlev ’94; Beenakker, Berends, Chapovsky ’99

One can keep track of the spin of the top and anti-top and compute spin correlations
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NLO with decay Products: Fact. Corrections

NLO corrections to various kinematic distributions for Tevatron and LHC
(Bernreuther et al. include also EW corrections)
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W. Bernreuther et al., Nucl.Phys. B690 (2004) 81

W. Bernreuther and Z. Si, Nucl.Phys. B837 (2010) 90-121

K.Melnikov and M. Schulze, JHEP 0908 (2009) 049

LHC

Tevatron

NB: the study could be extended at NNLO, using differential top quark decay at NNLO
M. Brucherseifer, F. Caola and K. Melnikov, JHEP 1304 (2013) 059

J. Gao, C. S. Li and H. X. Zhu, Phys. Rev. Lett. 110 (2013) 042001
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NLO with decay Products

In 2011 two groups computed the full set of NLO corrections to pp→WWbb

Calculation technically challenging (∼ 1500 Feynman diagrams, up to 6 external

legs)

The direct calculation confirms that for inclusive quantities the non-factorizable

corrections are of O(Γt/mt)

Possibility to study many distributions imposing realistic experimental cuts

A. Denner, S. Dittmaier, S. Kallweit, and S. Pozzorini, Phys. Rev. Lett. 106 (2011) 052001

G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos, M. Worek, JHEP 1102 (2011) 083

Finally, very recently these corrections were matched with PS in the POWHEG-BOX

frame

T. Jezo, J. M. Lindert, P. Nason, C. Oleari and S. Pozzorini, Eur. Phys. J. C 76 (2016) 12 691
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tt̄ Cross Section @ NNLO in QCD

In 2013 the total cross section was calculated in perturbative QCD at the NNLO!

Outstanding calculation, at the edge of current techniques! Virtual part: numerical

solution of the differential equations for the MIs; Real Part variation of sector

decomposition. Numerical cancelation of remaining IR divergences

P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001

M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080

M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004

Numerical implementation very demanding, but fitted for different values of mt in the
program Top++

M. Czakon and A. Mitov, Comput. Phys. Commun. 185 (2014) 2930

Resummation of soft gluons included up to NNLL

M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Phys. Lett. B 710 (2012) 612

Distributions were produced

M. Czakon, D. Heymes and A. Mitov, Phys. Rev. Lett. 116 (2016) 8, 082003 ; JHEP 1605 (2016) 034

Very recently NNLO QCD corrections were implemented by NLO EW corrections

M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, arXiv:1705.04105 [hep-ph].
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tt̄ Cross Section @ NNLO in QCD

Pure NNLO

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.009
+0.259(3.7%)
−0.374(5.3%)

+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0
+6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1
+9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0
+31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

 5
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 10
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σ t
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PPbar → tt+X @  NNLO+NNLL

MSTW2008NNLO(68cl)

Theory (scales + pdf)

Theory (scales)

CDF and D0, L=8.8fb
-1

NNLO+NNLL

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.164
+0.110(1.5%)
−0.200(2.8%)

+0.169(2.4%)
−0.122(1.7%)

LHC 7 TeV 172.0
+4.4(2.6%)
−5.8(3.4%)

+4.7(2.7%)
−4.8(2.8%)

LHC 8 TeV 245.8
+6.2(2.5%)
−8.4(3.4%)

+6.2(2.5%)
−6.4(2.6%)

LHC 14 TeV 953.6
+22.7(2.4%)
−33.9(3.6%)

+16.2(1.7%)
−17.8(1.9%)  150

 200

 250

 300
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σ t
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PP → tt+X @  NNLO+NNLL

mtop=173.3 GeV

MSTW2008NNLO(68cl)

Theory (scales + pdf)

Theory (scales)

CMS dilepton, 7TeV

ATLAS and CMS, 7TeV

ATLAS, 7TeV

CMS dilepton, 8TeV

P. Bärnreuther, M. Czakon and A. Mitov, Phys. Rev. Lett. 109 (2012) 132001

M. Czakon and A. Mitov, JHEP 1212 (2012) 054, JHEP 1301 (2013) 080

M. Czakon, P. Fiedler and A. Mitov, Phys. Rev. Lett. 110 (2013) 252004
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Analytic Calculation: tt̄ @ NNLO
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Analytic Calculation: tt̄ @ NNLO

The NNLO calculation of the top-quark pair hadro-production requires several ingredients:

Virtual Corrections

two-loop matrix elements for qq̄ → tt̄ and gg → tt̄

Czakon ’08, R. B., Ferroglia, Gehrmann, Maitre, von

Manteuffel, Studerus ’08-’13, Ferroglia, Neubert, Pec-

jak, Yang ’09

interference of one-loop diagrams

Körner et al. ’05-’08; Anastasiou and Aybat ’08

Real Corrections

one-loop matrix elements for the hadronic production of tt̄ + 1 parton

tree-level matrix elements for the hadronic production of tt̄ + 2 partons

Dittmaier, Uwer and Weinzierl ’07-’08, Bevilacqua, Cza-

kon, Papadopoulos, Worek ’10, Melnikov, Schulze ’10

Subtraction Terms

In a complete NNLO computation of σtt̄ we need subtraction terms with up to 2

unresolved partons.

Different methods on the market at the NNLO
Gehrmann-De Ridder, Ritzmann ’09, Daleo et al. ’09, Boughezal

et al. ’10, Glover, Pires ’10, Del Duca, Somogyi, Trocsanyi ’13,

Catani Grazzini ’07, B. Catani Grazzini Sargsyan Torre ’15Double and single real in σtt̄
Czakon ’10, Anastasiou, Herzog, Lazopoulos ’10
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Two-Loop Corrections to qq̄ → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = NcCF

[

N2
cA+ B +

C

N2
c

+Nl

(

NcDl +
El

Nc

)

+Nh

(

NcDh +
Eh

Nc

)

+N2
l Fl +NlNhFlh +N2

hFh

]

218 two-loop diagrams contribute to the 10 different color coefficients

The whole A(2×0)
2 is known numerically

Czakon ’08.

The coefficients Di, Ei, Fi, and A are known analytically (agreement with num res)
R. B., Ferroglia, Gehrmann, Maitre, and Studerus ’08-’09

The coefficients B and C can be calculated analytically (with the same techniques)
A. von Manteuffel et al., in progress

The poles of A(2×0)
2 (and therefore of B and C) are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09
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Two-Loop Corrections to qq̄ → tt̄

Di, Ei, Fi come from the corrections involving a closed (light or heavy) fermionic loop:

A the leading-color coefficient, comes from the planar diagrams:

The calculation is carried out analytically using:

Laporta Algorithm for the reduction of the dimensionally-regularized scalar integrals

(in terms of which we express the |M|2) to the Master Integrals (MIs)

Differential Equations Method for the analytic solution of the MIs
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Master Integrals for Nl and Nh

1 MI 1 MI 1 MI 2 MIs 1 MI 1 MI

1 MI 1 MI 2 MIs 1 MI 2 MIs 3 MIs

2 MIs 1 MI 1 MI 1 MI 2 MIs 2 MIs

18 irreducible two-loop topologies (26 MIs)

R. B., A. Ferroglia, T. Gehrmann, D. Maitre, and C. Studerus, JHEP 0807 (2008) 129.
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Master Integrals for the Leading Color Coeff

2 MIs 2 MIs 2 MIs 2 MIs 2 MIs

2 MIs 2 MIs 2 MIs 3 MIs

For the leading color coefficient there are 9 additional irreducible topologies (19 MIs)

R. B., A. Ferroglia, T. Gehrmann, and C. Studerus, JHEP 0908 (2009) 067.
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Example: Box for the Leading Color Coeff

=
1

m6

−1
∑

i=−4

Aiǫ
i
+ O(ǫ

0
)

A−4 =
x2

24(1 − x)4(1 + y)
,

A−3 =
x2

96(1 − x)4(1 + y)

[

−10G(−1; y) + 3G(0; x) − 6G(1; x)
]

,

A−2 =
x2

48(1 − x)4(1 + y)

[

−5ζ(2) − 6G(−1; y)G(0; x)+12G(−1; y)G(1; x)+8G(−1,−1; y)
]

,

A−1 =
x2

48(1 − x)4(1 + y)

[

−13ζ(3) + 38ζ(2)G(−1; y) + 9ζ(2)G(0; x) + 6ζ(2)G(1; x) − 24ζ(2)G (−1/y; x)

+24G(0; x)G(−1,−1; y) − 24G(1; x)G(−1,−1; y) − 12G (−1/y; x)G(−1,−1; y)

−12G(−y; x)G(−1,−1; y) − 6G(0; x)G(0,−1; y) + 6G (−1/y; x)G(0,−1; y) + 6G(−y; x)G(0,−1; y)

+12G(−1; y)G(1, 0; x) − 24G(−1; y)G(1, 1; x) − 6G(−1; y)G (−1/y, 0; x) + 12G(−1; y)G (−1/y, 1; x)

−6G(−1; y)G(−y, 0; x) + 12G(−1; y)G(−y, 1; x) + 16G(−1,−1,−1; y) − 12G(−1, 0,−1; y)

−12G(0,−1,−1; y) + 6G(0, 0,−1; y) + 6G(1, 0, 0; x) − 12G(1, 0, 1; x) − 12G(1, 1, 0; x) + 24G(1, 1, 1; x

−6G (−1/y, 0, 0; x) + 12G (−1/y, 0, 1; x) + 6G (−1/y, 1, 0; x) − 12G (−1/y, 1, 1; x) + 6G(−y, 1, 0; x)

−12G(−y, 1, 1; x)
]

1- and 2-dim GHPLs

ρ =
4m2

t
ŝ

→ 1
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GHPLs
One- and two-dimensional Generalized Harmonic Polylogarithms (GHPLs) are defined

as repeated integrations over set of basic functions. In the case at hand

fw(x) =
1

x− w
, with w ∈

{

0, 1,−1,−y,− 1

y
,
1

2
± i

√
3

2

}

fw(y) =
1

y − w
, with w ∈

{

0, 1,−1,−x,− 1

x
, 1− 1

x
− x

}

The weight-one GHPLs are defined as

G(0; x) = lnx , G(w;x) =

∫ x

0

dtfw(t)

Higher weight GHPLs are defined by iterated integrations

G(0, 0, · · · , 0
︸ ︷︷ ︸

n

; x) =
1

n!
lnn x , G(w, · · · ;x) =

∫ x

0

dtfw(t)G(· · · ; t)

Shuffle algebra. Integration by parts identities

Goncharov ’98, Remiddi and Vermaseren ’99, Gehrmann and Remiddi ’01-’02, Vollinga

and Weinzierl ’04
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Two-Loop Corrections to gg → tt̄
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 known

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 recently published

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13

For the leading-color coefficient

NO additional MI
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Two-Loop Corrections to gg → tt̄

|M|2 (s, t,m, ε) = 4π2α2
s

Nc

[

A0 +
(αs

π

)

A1 +
(αs

π

)2
A2 +O

(
α3
s

)
]

A2 = A(2×0)
2 +A(1×1)

2

A(2×0)
2 = (N2

c − 1)

(

N3
cA+NcB +

1

Nc
C +

1

N3
c

D +N2
cNlEl +N2

cNhEh

+NlFl +NhFh +
Nl

N2
c

Gl +
Nh

N2
c

Gh +NcN
2
l Hl +NcN

2
hHh

+NcNlNhHlh +
N2
l

Nc
Il +

N2
h

Nc
Ih +

NlNh

Nc
Ilh

)

789 two-loop diagrams contribute to 16 different color coefficients

Numeric result for A(2×0)
2 recently published

P. Bärnreuther, M. Czakon and P. Fiedler, ’14

The poles of A(2×0)
2 are known analytically

Ferroglia, Neubert, Pecjak, and Li Yang ’09

The leading color A, and light-quark El–Il coefficients are known analytically
R. B., Ferroglia, Gehrmann, von Manteuffel and Studerus ’11, ’13

- For the light-fermion contrib

9 additional MIs
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Additional Master Integrals for the Nl Coeff

2 MIs 2 MIs 2 MIs

3 MIs

For the Nl coefficients in the gg channel there are 4 additional irreducible topologies (9 MIs)

A. von Manteuffel and C. Studerus, JHEP 1310 (2013) 037
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Light Quark Coefficients in gg

Some considerations concerning the functional basis in which to express our analytic results are

in order:

The result can be written in terms of 289 GHPLs up to weight 4. They can be reduced to

221 using the algebra (3 MB of analytic formula)

Alphabet in the naive case:

G(...; y) ∈
{

−1, 0,− 1

x
,−x,− (1 + x2)

x
,− (1− x+ x2)

x

}

G(...;x) ∈
{
−1, 0, 1, [1 + o2], [1− o+ o2]

}

NOTE: in this basis, 200 s for the numerical evaluation of a single phase space point!

Hopeless! No way to use it in a Monte Carlo. What to do?

From complicated functions

of simple arguments x, y

To simpler functions

of complicated arguments

R. B., A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, JHEP 1312 (2013) 038

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 32/55



Optimized Functional Basis

It turns actually out that a good choice is to express the result in terms ONLY of

logarithms, polylogarithms Lin with n = 2, 3, 4, and a single type of multiple

polylogarithms, the Li2,2:

Lin(x) = −G(0, · · · , 0, 1
︸ ︷︷ ︸

n

;x) , Li2,2(x1, x2) = G

(

0,
1

x1
, 0,

1

x1x2
; 1

)

of arguments

±x, ±x2, − 1

y
, −y, − y

x
, −x(x+ y),

x+ y

y
, −x+ z(x, y)

x+ y
, · · ·

these arguments are such that the multiple polylogarithms are real valued in the

Minkowski region

We find again 225 multipole polylogarithms, out of which 57 Li2,2. Moreover the size of

the analytic expression is always about 3 MB. However, the numerical evaluation now

takes a fraction of a second!!

Part of this transformation was done using symbols and co-products (Duhr, Gangl, Rhodes ’12)

R. B., A. Ferroglia, T. Gehrmann, A. von Manteuffel, and C. Studerus, JHEP 1312 (2013) 038
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Heavy-Quark Loop Coefficients

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 34/55



Heavy-Quark Loop Coefficients

The color structure of the heavy-quark loop coefficients is the following

A2×0
2 = (N2

c − 1)

(

N2
cNh Eh +Nh Fh +

Nh

N2
c

Gh

)

The planar diagrams contribute to all the three color factors, while the crossed diagrams

only to two of them

Therefore, calculation of planar diagrams gives one gauge independent color factors out

of three

In collaboration with P. Caucal and M. Capozi
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Planar Corrections

The planar Feynman diagrams can be described in terms of dim-reg scalar integrals

belonging to 7 topologies: 2 at 7 denominators and 5 at 6 denominators

The 7-denom topologies are reduced to a set of 55 Master Integrals using IBP’s

The MIs are calculated with the Diff Eqs Method
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Planar Master Integrals

Blue diagrams have homogeneous solutions expressed in terms of Elliptic Integrals

Green diagrams contain non-homogeneous elliptic terms

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 36/55



Differential Equations Method

One of the more successful techniques for the computation of multi-loop Feynman

diagrams in the last years is the Differential Equations Method

Decomposition of the Amplitude

in terms of Dim Reg Scalar Integrals

Automatic Generation
of IBPs, LI

and sym. relations

MIs

Automatic Generation
of the System of

1st order linear diff eqs

Solution of the system in (d-4)
(Numerical or) Analytical in a

suitable functional basis

Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, October 23-26, 2017 – p. 37/55



Integration-by-Parts Identities

One of the building blocks of the method is constituted by the REDUCTION PROCEDURE

Using IBP identities and LIs the scalar integrals in terms of which our observable is

expressed are “REDUCED” to a set of l.i. ones: the MASTER INTEGRALS

Different algorithms used for this goal

S. Laporta ’96, R. N. Lee ’08, A. von Manteuffel and R. M. Schabinger ’15, A. Georgoudis and Y. Zhang ’15

PUBLIC
PROGRAMS

AIR – Maple package

(C. Anastasiou, A. Lazopoulos, JHEP 0407 (2004) 046 )

FIRE – Mathematica package (A. V. Smirnov, JHEP 0810 (2008) 107)

REDUZE – REDUZE2 C++/GiNaC packages

(C. Studerus, Comput. Phys. Commun. 181 (2010) 1293;

A. von Manteuffel and C. Studerus, arXiv:1201.4330 [hep-ph].)

LiteRed – Mathematica package (R. N. Lee arXiv:1212.2685 [hep-ph])

Kira – C++/GiNaC (P. Maierhöfer, J. Usovitsch, P. Uwer,

arXiv:1705.05610)

F.V. Tkachov, Phys. Lett. B100 (1981) 65.

K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159.
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Differential Equations for the MIs

The Master Integrals are function of the Mandelstam invariants ( x = s/m2, t/m2, ...)

Fi =

∫

dDk1d
Dk2

Sn1
1 · · ·Snq

q

Dm1
1 · · ·Dmt

t

= Fi(x)

They obey systems of first-order linear differential equations in the invariants

dFi

dx
=

∑

j

hj(x,D) Fj +Ωi(x,D)

where i, j = 1, ...,NMIs and Ωi(x,D) involves subtopologies.

The choice of the masters is arbitrary, but crucial for the solution of the system!

We look for solutions in (D − 4) ∼ 0 (Laurent expansion)

The system can be solved analytically (but also numerically ...)

Analytical solutions need a suitable functional basis, that depends on the problem

V. Kotikov, Phys. Lett. B254 (1991) 158; B259 (1991) 314; B267 (1991) 123.

E. Remiddi, Nuovo Cim. 110A (1997) 1435.

E. Remiddi and T. Gehrmann, Nucl. Phys.B580 (2000) 485.
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Decoupling and Non-Decoupling Systems

In almost all the cases treated so far at NNLO and beyond (mainly massless corrections)

the idea is to reduce the systems order-by-order in ǫ at a triangular matrix form for the

homogeneous part

∂xh(x) =






a1,1 0 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 a4,4




h(x) + non homogeneous terms

However, not all the systems follow this behaviour. In some (more and more numerous)

cases we are in the situation in which the simplification of the system cannot be better

than this

∂xh(x) =






a1,1 a1,2 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 0 a4,4




h(x) + non homogeneous terms

In this case, although two of the masters can be solved using only first order

differential equations, the other two are coupled and their sub-system is equivalent
to a
Second Order Differential Equation

Solution: two sol for the homogeneous and the particular with the variation of
constants
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Functional Basis for the Solutions

If the system of differential equations can be cast in canonical form (triangularized in ǫ), then

when all possible square roots are removed (with changes of variables), the appropriate

functional basis for the analytic solutions is the one of Multiple Polylogarithms (MPLs)

G(a1, a2, ..., an, x) =

∫ x

0

1

t− a1
G(a2, ..., an, t)dt

Goncharov ’98, Remiddi-Vermaseren ’99,

Ablinger-Bluemlein-Schneider ’13, Duhr-Gangl-Rhodes ’12

MPLs (or GPLs) can be evaluated numerically with dedicated C++ fast and precise

numerical routines
Vollinga-Weinzierl ’05

In the case the alphabet cannot be fully linearized, we can find a solution in terms of

repeated integrals that involve square roots. In particular, we can find a solution at weight

2 in terms of logarithms and Li2 functions. The weight 3 will be an integration over known

functions, while the weight 4 would involve a two-fold integration. However, integrating by

parts we can make in such a way that we are left with a single one-fold integration to be

done numerically.
Henn-Caron Huot ’14
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Two-Point Functions

The first case of Master Integrals that cannot be expressed in terms of generalized

polylogarithms is the two-loop equal masses Sunrise
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Two-Point Functions

The first case of Master Integrals that cannot be expressed in terms of generalized

polylogarithms is the two-loop equal masses Sunrise

Reducing the corresponding topology we find two MIs that obey a coupled system of first

order linear differential equations in the dimensionless variable z = p2/m2

The second-order linear diff eq for the scalar diagram in d dimensions is:

d2

dz2
F +

(3(4− d)z2 + 10(6− d)z + 9d

2z(z + 1)(z + 9)

d

dz
F +

(d− 3)[(d− 4)z − d− 4]

2z(z + 1)(z + 9)
F = Ω(z, d)

Expanding in (d− 4) we find

F = − 3

8(d− 4)2
+

(z + 18)

32(d− 4)
+ F0 + ...

The solution of F0, F1, etc ... is more easily found from the 2-dimensional solution using

Tarasov’s dimensional relations
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Two-Point Functions

The solutions of the homogeneous equation in d = 2 are given in terms of complete

elliptic integral of the first kind

ψ1(z) =
K(m2(z))

[(z + 1)3(z + 9)]
1
4

ψ2(z) =
K(1−m2(z))

[(z + 1)3(z + 9)]
1
4

where

K(m2) =

∫ 1

0

dx
√

(1− x2)(1−m2x2)
m2 =

z2 + 6z − 3 +
√

(z + 1)3(z + 9)

2
√

(z + 1)3(z + 9)

Therefore, the particular solution is expressed via Euler’s variation of constants in terms

of integrals over the elliptic kernel represented by the homogeneous solutions

F (z) = c1ψ1(z) + c2ψ2(z)− ψ1(z)

∫ z dx

W
ψ2(x) Ω(x) + ψ2(z)

∫ z dx

W
ψ1(x) Ω(x)

S. Laporta and E. Remiddi, Nucl.Phys. B704 (2005) 349

L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54 (2013) 052303

E. Remiddi and L. Tancredi, Nucl.Phys. B907 (2016) 400
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Two-Point Functions

Recently proposal of expressing the solution in terms of Elliptic Polylogarithms

ELin;m(x, y, q) =

∞∑

j=1

∞∑

k=1

xj

jn
yk

km
qjk

where q = Exp(iπψ2/ψ1) is the nome of the elliptic curve and it is always |q| < 1

In terms of ELi the sunrise in d = 2 dimensions is

S
(0)
1,1,1(t)=

3ψ1

iπ

[

1

2
Li2(e

2πi/3
)−

1

2
Li2(e

−2πi/3
)+ELi2,0(e

2πi/3
,−1,−q)−ELi2,0(e

−2πi/3
,−1,−q)

]

Numeric evaluation of the Elliptic Polylogarithms in all the real t axis

Dispersion relations (Remiddi and Tancredi) and E-Polylogarithms.

Another two-loop two-point function was studied: Kite Integral (homogeneous non elliptic,

sunrise in the non homogeneous part of the diff eq)

Even more: three-loop “banana” graph! Homogeneous solutions as products of elliptic

integrals
L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57 (2016) 032304

C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B 922 (2017) 528

A. Primo and L. Tancredi, Nucl. Phys. B 921 (2017) 316 ’17

J. Ablinger et al. arXiv:1706.01299 [hep-th]

E. Remiddi and L. Tancredi, arXiv:1709.03622
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Three-Point Functions

Also three-point functions can exhibit an “elliptic behaviour”. Very recently an elliptic three-point

function was studied in detail

F1 = F2 =

d2

dx2
f(x) +

(
1

x
+

1

x− 16

)
d

dx
f(x)− 1

64

(
1

x
− 1

x− 16

)

f(x) = 0 , f(x) = x
3
2 F1

The homogeneous solutions for the two masters are expressed in terms of the complete

elliptic integrals of the first and second kind

K(f(x)) =

∫ 1

0

dx
√

(1− x2)(1− fx2)
E(f(x)) =

∫ 1

0

√
1− fx2√
1− x2

dx

The complete solution is found integrating in the different kinematic regions the non

homogeneous part (previously expressed in terms of GPLs) over the elliptic homogeneous

solutions. Excellent numerical performance
A. von Manteuffel and L. Tancredi, ’17
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Three-Point Functions

Another example: the two-massive exchange has three MIs

F1 = F2 = F3 =
(p1 · k1)

With this choice, the third one decouples from the other two. Therefore, we can write a second order

differential equation for F1 (for instance)

d2F1

dx2
+

[
3

x
+

1

x+ 1
+

1

x− 8

]
dF1

dx
+

[
1

x2
+

9

8x
− 4

3(x+ 1)
+

5

24(x− 8)

]

F1 =Ω(x)

Since the d = 2 homogeneous equations for the Sunrise S(z) was

∂2

∂z2
S(z) +

[
1

z
+

1

z + 1
+

1

z + 9

]
∂

∂z
S(z) +

[
1

3z
− 1

4(z + 1)
− 1

12(z + 9)

]

S(z) = 0

it means that there is a simple relation between S(z) and F1(z): S(z) = −(z + 1)F1(−z − 1)

U. Aglietti, R. B., L. Grassi, E. Remiddi, Nucl.Phys. B789 (2008) 45.
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Semi-Numerical Evaluation

In the case of One dimensionless variable, one can adopt a Semi-Numerical evaluation of the

masters, based on the differential equation

We expand the diff eq and the solution in series of x around the singular points:

x = 0, 8,∞,−1. Every series depends on 2 arbitrary constants ⇒ we impose the matching

conditions expressing all of them in terms of 2 of them.

Imposing the initial conditions we fix the constants and we find the solution in series

representation. We construct a Fortran routine that gives F1(x) for every value of x with the

desired precision.
S. Pozzorini and E. Remiddi, Comput.Phys.Commun. 175 (2006) 381
U. Aglietti, R. B., L. Grassi, E. Remiddi, Nucl.Phys. B789 (2008) 45
R. N. Lee, A. V. Smirnov, V. A. Smirnov, arXiv:1709.07525

Unfortunately difficult to generalize to 3 scales (two variables) ...
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tt̄ 5-Den Elliptic Box

The first unknown four-point function is the 5-denominator Elliptic Box

The reduction procedure gives three MIs

With the following choice we succeed to disentangle one of them:

The system of first order differential equations becomes, at each order in epsilon,

constituted by a single first order equation and two coupled equations (equivalent to a

second order diff eq)

We contruct the second order differential equation for one of the two masters (we choose

the second) in s and t. We find the two independent solutions of the homogeneous

equation

We compute the Wronskian and we determine the particular solution via Euler’s variation

of constants
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Second order hom differential equations

The equations in s and t of the master integral are (mt = 1):

d2

ds2
F + p(s, t)

d

ds
F + q(s, t)F = 0

d2

dt2
F + r(s, t)

d

dt
F + u(s, t)F = 0

p(s, t) = −
1

(s − 4)
−

2

s
−

1

(s − 4 t−1
t−9

)
−

1

(s +
(t−1)2

t
)

+
1

(s + 4 t+1
t+3

)

q(s, t) = −
1

4s2
−

(t − 9)5

(256(t − 3)3(4 − 9s − 4t + st))
−

(3 + t)5

(64(−4 + 3s + 4t + st)(−3 − 2t + t2)2)

+
(5 − 10t + 2t2)

(4s(t − 1)2)
+

(−25 − 77t − 27t2 + t3)

(128(−4 + s)(1 + t)2)

−
((t − 9)2(−1971 + 1944t − 534t2 + 48t3 + t4))

(256(4 + s(t − 9) − 4t)(t − 3)3(t − 1))
+

(9t2 + 6t3 + 2t4 − 6t5 + t6)

((t − 3)2(t − 1)2(1 + t)2(1 − 2t + st + t2))

−
((3 + t)2(135 + 192t − 10t2 − 72t3 + 11t4))

(64(t − 3)2(t − 1)(1 + t)2(−4 + 4t + s(3 + t)))

and similar coefficients for the equation in t ...

Many singular points ... difficult direct solution! The parametrization trick does not help.
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Cuts and Solutions of the Homogeneous Eq

Another possible approach to the solution of the Homogeneous Diff Eq is the direct

calculation of the maximal cut:

Simultaneously replace propagators with their δ-functions

1

(p2 +m2)
→ δ(p2 +m2)

If the propagator is squared, we cut it in the IBP sense (reduction to integrals with

single prop and scalar prods)

The observation is based on the fact that if the masters under consideration obey a
system

∂xMi(ǫ, x) = Aij(ǫ, x)Mj(ǫ, x) + Ωi(ǫ, x)

then
∂xCut(Mi(ǫ, x)) = Aij(ǫ, x)Cut(Mj(ǫ, x))

because Cut(Ωi(ǫ, x) = 0 =⇒ the MaxCut is solution of the Hom Eq

Integrate directly finite MaxCut can help to solve the system of Diff Eqs

R. N. Lee and V. A. Smirnov, JHEP 12 (2012) 104.

A. Primo and L. Tancredi, Nucl. Phys. B916 (2017) 94.

H. Frellesvig and C. G. Papadopoulos, JHEP 04 (2017) 083.

M. Harley, F. Moriello, R. M. Schabinger, ’17
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Maximal Cut

We move to “PLAN B” which consists on the calculation of the d = 4 maximal cut (Primo and

Tancredi), which is solution of the differential equation.

Cut(s, t) =

K









16(t−1)(s+t−1)

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2

4(t−1)2

(

2

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−1

)

+s

(

t2+8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
t−6t−8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−3

)









2s

√

√

√

√
4(t−1)2

(

2

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−1

)

+s

(

t2+8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
t−6t−8

√

s(t2+(s−2)t+1

(t−1)2(s+t−1)2
−3

)

s

The two solutions of the homogeneous equation are then

ψ1 =
1

R(s, t)
K(ω) ψ2 =

1

R(s, t)
K(1− ω)
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Solution

Since the subtopologies entering the non-homogeneous part of the Diff Eq are

expressed in terms of the variables x and y such that

s = −m2 (1− x)2

x
t = −m2y

we move to x and y

Knowing the two solutions of the homogeneous equation, the particular solution can be

found with the Euler variation of constants method

F = c1ψ1(x, y) + c2ψ2(x, y)

−ψ1(x, y)

∫ x dξ

W
ψ2(ξ, y) Ω(ξ, y) + ψ2(x, y)

∫ x dξ

W
ψ1(ξ, y) Ω(ξ, y)

The Wronskian W of the solutions is

W (x, y) =
π

32

x2[y − 3− 2x(3y − 1) + x2(y − 3)]

(x− 1)3(x+ 1)(x+ y + x2y + xy2)[y + 9 + 2x(y − 7) + x2(y + 3)]

Imposing the regularity at s = 0 we find c1 = c2 = 0
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Solution

The non-homogeneous terms Ω(x, y) contain polylogarithmic functions and elliptic

integrals

At ǫ = 0 we have:
Ω(x, y) = P (x, y)/Q(x, y) ; log x ; K(f(y))

so, K(f(y)) that comes from the sunrise does not enter the integration in dξ!

The iterated integrations that we have at this order in ǫ are of the kind

F2 ∼
∫ x

1

dξ

{
P (ξ, y)

Q(ξ, y)
; log ξ

}
1

R(ξ, y)
K(ω(ξ, y))

At O(ǫ) (which is required in the amplitude) we also have Li2(f(ξ, y)) and log2 at the

place of the log

Note: we have a single integration in x (and y behaves as a parameter).

Numerical evaluation extremely fast (for the moment with Mathematica). We are in

agreement with FIESTA4 ( 5 digits).

This representation is also suitable for analytic continuation in the Minkowski physical

region.
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The decoupled Masters

In principle, once the solution of the coupled masters is found, the problem is completely solved

We solve the second order linear diff eq for one of the coupled MIs (homogeneous

solutions and particular solution as repeated integrations over the elliptic kernel)

The solution of the other coupled MI comes just performing derivatives

The ǫ-decoupled MIs of the same set can be calculated solving a first order linear diff eq

However, this implies an additional integration over the solution of the coupled MIs

=⇒ even more complicated functional structure!

Since the set of Masters can be chosen freely, we can find different basis in which we

decouple one master and solve a second order diff eq for one of the coupled.

We found two basis constituted by (F1, F2, F3) and (F1, F2, F4), with F2, F3 and F4

constituting a basis of integrals finite in 4 dimensions. Having solved F2, we can get the

solutions of F3 and F4 just by derivatives

We calculated numerically also the finite parts of F3 and F4 in the Euclidean region and found

agreement with FIESTA4 ( 5 digits)
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Conclusions

Analytic computations received a big boost in the last years. In particular the reduction to

the MIs and the method of differential equations for their calculation seams to be very

powerful (many calculations more and more complicated)

The paradigm at the moment seams to be the following

The masters that can be expressed in terms of multiple polylogarithms satisfy a

system of diff eqs in canonical form

Increasing the complexity of the calculations, we start to find cases in which the

system does not decouple in ǫ. In these cases, higher-order differential equations

(for the moment second-order) have to be solved. The basis of functions involved

points in the direction of generalized hypergeometric functions (and particular

subcases)

We discussed the calculation of the planar corrections to gg → tt̄ that involve a closed

heavy-quark loop, in perturbative QCD. We afforded the calculation of 55 MIs: 31 are

expressed in term of multiple polylogarithms (or more in general repeated integrations

over a limited alphabet); 24 of them involves elliptic integrals.

For the masters involving elliptic integrals, we calculated the homogeneous solutions for

the corresponding second order differential equations using the maximal cut in d = 4

dimensions.

The study of the structure of the new functions just started ....
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