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Motivation

◮ Cutkosky Rules old, established and still mysterious
How often can we cut, what do we learn?

◮ What type of multi-valued function does a Feynman graph
generate?
What is the role of graph complexes here?

◮ Physical thresholds? Anomalous thresholds?
What is the systematics?

◮ Dispersion relations?
Can we reconstruct a graph from its variations?
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A cell complex for graphs: Outer Space
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The cubical chain complex
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Two matrices, obtained from the two possible orderings of edges in
the spanning tree. In total, 5 spanning trees each on two edges →
10 matrices.
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The jewel for the 3-edge banana

A1 = 0

A2 = 0
A3 = 0

A1 = const

A3 = const
A2 = const
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Gluing jewels



Spaces



Example

Mγ

1 =
a ∪ b
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and the three entries populate a cubical complex which is simply
an interval [0, 1], with the endpoint at zero associated to (Mγ

1 )11,
the endpoint at 1 to (Mγ

1 )22 and the interval ]0, 1[ to (Mγ

1 )21.
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Multivalued Graphs

ΦMV

R (s, s0,m
2
1,m

2
2) =

1

4π2

√
λ

2s
ln

x +
√
λ

x −
√
λ
−m2

1 −m2
2

2s
ln

m2
1

m2
2

−(s → s0)

+2πıZ

√
λ

2s
,

In general, for |Γ| ≥ 2:

ΦMV

R (Γ) =
∑

ΦMV

R (γ) · ΦMV

R (Γ/γ),

where · indicates inserting the ΦMV

R (γ) integrand via Fubini (as an
iterated integral), and the core Hopf algebra is
∆c(Γ) =

∑
γ ⊗ Γ/γ, gneralizing the renormalization Hopf algebra.



Start of induction: from Mixed Hodge Structure of 1-loop graphs
(see Bloch & Kreimer)
Furthermore: Consistency with Cutkosky rules, as all cuts come
from full cuts and the core Hopf algebra
Gradings: increasing transcendental complexity of a graph by
grading à la Vogtmann et al:

||Γ|| = 2|Γ| − v0,

where v0 is the valence of the basepoint (the vertex at ∞ into
which all external edges merge)



Cutkosky’s theorem

Theorem (Cutkosky)

Assume the quotient graph G ′′ has a physical singularity at an
external momentum point p′′ ∈ (

⊕

V ′′ R
D)0, i.e. the intersection

⋂

e∈E ′′ Qe of the propagator quadrics associated to edges in E ′′ has
such a singularity at a point lying over p′′. Let p ∈ (

⊕

V R
D)0 be

an external momentum point for G lying over p′′. Then the
variation of the amplitude I (G ) around p is given by Cutkosky’s
formula

var(I (G )) = (−2πi)#E ′′

∫ ∏

e∈E ′′ δ+(ℓe)
∏

e∈E ′ ℓe
. (1)
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r
∏

e 6∈T1∪T2

Ae ,

(Q(T1) · Q(T2))
r = (Q(T1) · Q(T2))− r ,

if T1 ∪ T2 separates x , y .

◮

Φ(Γ− γ)Eγ
k −M(γ)ψ(Γ/γ)Eγ

k−1 = Φu(Γ− γ),

with u = (
∑

e∈Eγ
me)

2.
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From Discriminants to anomalous thresholds

◮ i) A necessary and sufficient condition for a physical Landau
singularity is Y0 > 0 with D = 0.

◮ ii) The corresponding anomalous threshold sF for fixed masses
and momenta {M,Q} is given as the minimum of
s({a, b}, {Q,M}) varied over edge variables {a, b}. It is finite
(sF > −∞) if the minimum is a point inside p ∈ P

eΓ−1 in the
interior of the simplex σΓ. If it is on the boundary of that
simplex, sF = −∞.

◮ iii) If for all T ∈ T Γ
s and for all their forests (Γ,F ) we have

sF > −∞, the Feynman integral ΦR(Γ)(s) is real analytic as a
function of s for s < minF {sF}.



Dispersion













1 0 0 0
↑ π ↑ π
ΥT2

Γ2
⇋

Var
disp ΥT2−e1

Γ2
0 0

↑ π ↑ π ↑ π
ΥT3

Γ3
⇋

Var
disp ΥT3−e1

Γ3
⇋

Var
disp ΥT3−e1−e2

Γ3
0

↑ π ↑ π ↑ π ↑ π
ΥT4=T

Γ4=Γ ⇋
Var
disp ΥT4−e1

Γ4
⇋

Var
disp ΥT4−e1−e2

Γ4
⇋

Var
disp ΥT4−e1−e2−e3

Γ4













.

An example for a graph with a length 3 spanning tree. Moving up,
we shrink edges, moving right, we put more edges on the
mass-shell. Dispersion integrals move left.
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Along the diagonal, only normal thesholds appear in dispersion
integrals.
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For the subdiagonals, compute your anomalous thresholds.



Example: The triangle

Φ∆ =

=ΦΓ/e3
︷ ︸︸ ︷

p2aA1A2 − (m2
1A1 +m2

2A1)(A1 + A2)+A3((p
2
b−m2

3−m2
1)A1+(p2c−m2

1−m2
3)

so

Φ∆ = Φ∆/e3 + A3Φ
m2

3

∆−e3
− A2

3m
2
3

=1
︷ ︸︸ ︷

ψ∆−e1 ,

as announced (A3 = tγ):

X = Φ∆/e3 , Y =

=:l1
︷ ︸︸ ︷

(p2b −m2
3 −m2

1)A1 +

=:l2
︷ ︸︸ ︷

(p2c −m2
1 −m2

3)A2, Z = m2
3.

We have Y0 = m2l1 +m1l2, and need Y0 > 0 for a Landau singularity.



cont’d

Solving Φ(∆/e3) = 0 for a Landau singularity determines the familiar
physical threshold in the s = p2a channel, leading for the reduced graph to

pQ : s0 = (m2 +m3)
2, pA : A1m1 = A2m2.

We let D = Y 2 + 4XZ be the discriminant. For a Landau singularity we
need

D = 0.

We have

Φ∆ = −m2
3

(

A3 −
Y +

√
D

2m2
3

)(

A3 −
Y −

√
D

2m2
3

)

,

where Y ,D are functions of A1,A2 and m2
1,m

2
2,m

2
3, s, p

2
b, p

2
c .



cont’d

We can write
0 = D = Y 2 + 4Z (sA1A2 − N),

with N = (A1m
2
1 + A2m

2
2)(A1 + A2) s-independent. This gives

s(A1,A2) =
4ZN − (A1l1 + A2l2)

2

4ZA1A2

=:
A1

A2

ρ1 + ρ0 +
A2

A1

ρ2.

Define two Kallen functions λ1 = λ(p2b ,m
2
1,m

2
3) and λ2 = λ(p2c ,m

2
2,m

2
3).

Both are real and non-zero off their threshold or pseudo-threshold. Then,
for

λ1, λ2 > 0,

we find the threshold s1 at

s1 =
4m2

3(
√
λ1m

2
1 +

√
λ2m

2
2)(

√
λ1 +

√
λ2)− (

√
λ1l2 +

√
λ2l1)

2

4m2
3

√
λ1
√
λ2

.



cont’d

On the other hand for r < 0 and therefore the coefficients of ρ1, ρ2
above of different sign we find a minimum

s1 = −∞, (2)

along either A1 = 0 or A2 = 0. Get dispersion from other channels,
looking at other spanning trees, that is.

Things are not simpler than they can be, and not more difficult than they

must be.
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