W asymmetry studies

Katarzyna Wichmann, Volodymyr Myronenko, <u>Vladyslav Danilov</u>

13.07.2017

What we have

- Volodymyr and I met W/Z analysis people at CERN.
- 05.07.2017 I was given a full set of codes and Maria helped me to run it.
- One of the main parts dedicated to signal extraction. It selects ntuples and performs a signal extraction to get yield values for the various decay products:
 - 1) For Wenu, the yield is calculated from a fit to the recoil-corrected signal MC template, an analytic QCD background model, and other background templates from MC with a fixed cross section ratio to our signal.
 - 2) For Wmunu, the yield is calculated from a fit to the recoil-corrected signal MC template, a QCD background model generated from an anti-isolation selection sample, and other background templates from MC with a fixed cross section ratio to our signal.
- Existing code produces plots of missing \mathbf{E}_{T} for the whole eta region. Maria suggested that I might be needed to determine eta region and make same plots but for each region

Missing transverse energy

- The recoil to the vector boson is defined as the negative of the vector sum of transverse energy vectors of all particles reconstructed with the PF algorithm in W and Z events, after subtracting the contribution from the daughter leptons(s).
- Then, the distribution of the recoil components are fitted (parallel and perpendicular to the boson p_T direction) with a triple Gaussian , whose mean and width vary with the boson transverse momentum.

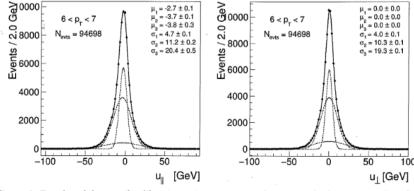


Figure 2: Results of the recoil calibration using events in data. 2a and 2b are examples of the double Gaussian fits.

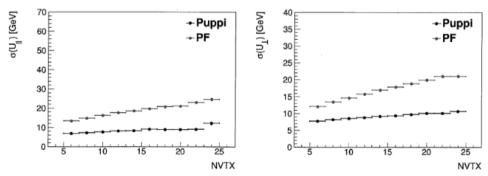
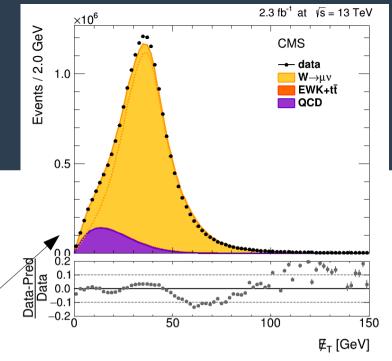
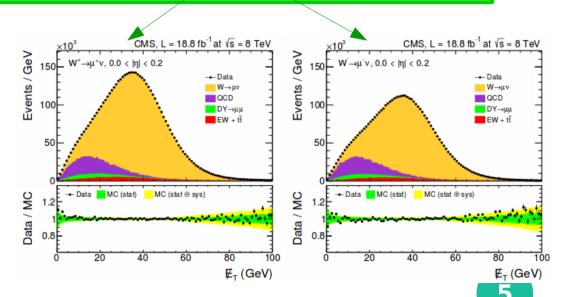
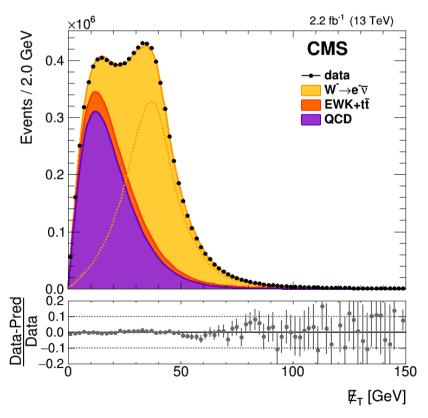



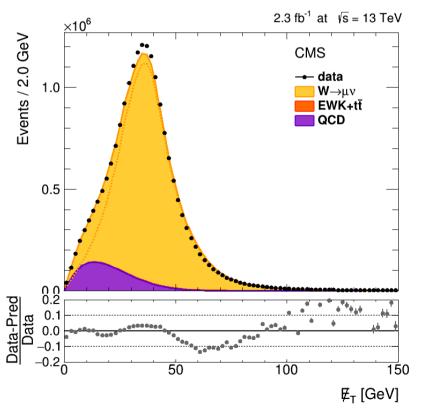
Figure 3: Results of the recoil calibration using events in data. 3a and 3b are the response of the recoil parallel and perpendicular components.

Signal extraction


- The W boson candidate events are required to have an identified electron or muon
- The W boson signal and background yields are obtained from the E_{miss T} distributions using a unbinned maximum likelihood fit. Background from W→tau nu, Drell_yan, diboson and ttbar became significant in at high E_{miss T}, contributing about 10% of the total selected yield.
- The $E_{miss\ T}$ model is fitted to the observed distribution as the sum of three contributions:
 - 1) The W boson signal
 - 2) QCD background
 - 3) Other backgrounds

What we have


• Existing code produces plots of missing \mathbf{E}_{T} for the whole eta region. Maria suggested that I might be needed to determine eta region and make same distributions but for each region


$ \eta $ bin	$\chi^2 (n_{\rm dof} = 197)$	N^+ (10 ³)	N^{-} (10 ³)	ρ+,- (%)
0.00-0.20	238	4648.5 ± 4.2	3584.9 ± 3.8	18.9
0.20-0.40	242	4414.5 ± 4.0	3360.9 ± 3.7	18.8
0.40-0.60	248	4893.8 ± 4.3	3692.5 ± 3.9	18.9
0.60-0.80	199	4900.1 ± 4.3	3621.3 ± 3.8	19.2
0.80-1.00	218	4420.8 ± 4.0	3218.0 ± 3.6	18.7
1.00-1.20	204	4235.7 ± 3.9	2949.2 ± 3.4	18.5
1.20-1.40	193	4176.8 ± 3.9	2827.0 ± 3.5	19.3
1.40-1.60	213	4351.2 ± 4.2	2864.7 ± 3.7	19.3
1.60-1.85	208	4956.2 ± 4.4	3134.1 ± 3.9	19.5
1.85 - 2.10	238	5292.9 ± 4.4	3229.6 ± 3.8	18.5
2.10-2.40	229	4023.7 ± 3.9	2428.2 ± 3.3	17.6

What we can produce

- The codes that works and produces plots
- Needed to be improved Chi/ndf
- Needed to be chosen eta regions

Thank you for attention!