W asymmetry studies Katarzyna Wichmann, Volodymyr Myronenko, <u>Vladyslav Danilov</u> 13.07.2017 #### What we have - Volodymyr and I met W/Z analysis people at CERN. - 05.07.2017 I was given a full set of codes and Maria helped me to run it. - One of the main parts dedicated to signal extraction. It selects ntuples and performs a signal extraction to get yield values for the various decay products: - 1) For Wenu, the yield is calculated from a fit to the recoil-corrected signal MC template, an analytic QCD background model, and other background templates from MC with a fixed cross section ratio to our signal. - 2) For Wmunu, the yield is calculated from a fit to the recoil-corrected signal MC template, a QCD background model generated from an anti-isolation selection sample, and other background templates from MC with a fixed cross section ratio to our signal. - Existing code produces plots of missing \mathbf{E}_{T} for the whole eta region. Maria suggested that I might be needed to determine eta region and make same plots but for each region ## Missing transverse energy - The recoil to the vector boson is defined as the negative of the vector sum of transverse energy vectors of all particles reconstructed with the PF algorithm in W and Z events, after subtracting the contribution from the daughter leptons(s). - Then, the distribution of the recoil components are fitted (parallel and perpendicular to the boson p_T direction) with a triple Gaussian , whose mean and width vary with the boson transverse momentum. Figure 2: Results of the recoil calibration using events in data. 2a and 2b are examples of the double Gaussian fits. Figure 3: Results of the recoil calibration using events in data. 3a and 3b are the response of the recoil parallel and perpendicular components. ### Signal extraction - The W boson candidate events are required to have an identified electron or muon - The W boson signal and background yields are obtained from the E_{miss T} distributions using a unbinned maximum likelihood fit. Background from W→tau nu, Drell_yan, diboson and ttbar became significant in at high E_{miss T}, contributing about 10% of the total selected yield. - The $E_{miss\ T}$ model is fitted to the observed distribution as the sum of three contributions: - 1) The W boson signal - 2) QCD background - 3) Other backgrounds #### What we have • Existing code produces plots of missing \mathbf{E}_{T} for the whole eta region. Maria suggested that I might be needed to determine eta region and make same distributions but for each region | $ \eta $ bin | $\chi^2 (n_{\rm dof} = 197)$ | N^+ (10 ³) | N^{-} (10 ³) | ρ+,- (%) | |--------------|------------------------------|--------------------------|----------------------------|----------| | 0.00-0.20 | 238 | 4648.5 ± 4.2 | 3584.9 ± 3.8 | 18.9 | | 0.20-0.40 | 242 | 4414.5 ± 4.0 | 3360.9 ± 3.7 | 18.8 | | 0.40-0.60 | 248 | 4893.8 ± 4.3 | 3692.5 ± 3.9 | 18.9 | | 0.60-0.80 | 199 | 4900.1 ± 4.3 | 3621.3 ± 3.8 | 19.2 | | 0.80-1.00 | 218 | 4420.8 ± 4.0 | 3218.0 ± 3.6 | 18.7 | | 1.00-1.20 | 204 | 4235.7 ± 3.9 | 2949.2 ± 3.4 | 18.5 | | 1.20-1.40 | 193 | 4176.8 ± 3.9 | 2827.0 ± 3.5 | 19.3 | | 1.40-1.60 | 213 | 4351.2 ± 4.2 | 2864.7 ± 3.7 | 19.3 | | 1.60-1.85 | 208 | 4956.2 ± 4.4 | 3134.1 ± 3.9 | 19.5 | | 1.85 - 2.10 | 238 | 5292.9 ± 4.4 | 3229.6 ± 3.8 | 18.5 | | 2.10-2.40 | 229 | 4023.7 ± 3.9 | 2428.2 ± 3.3 | 17.6 | ### What we can produce - The codes that works and produces plots - Needed to be improved Chi/ndf - Needed to be chosen eta regions # Thank you for attention!