
The Condensed Krypton Source (CKrS)

The KATRIN experiment

Requirements
 
➔ low endpoint energy
➔high source luminosity
➔high energy resolution
➔very low background
➔stability of experimental
   parameters on the per mil 

to ppm level

 → MAC-E filter concept

Tritium β-decay
E0    = 18.6 keV, T1/2 = 12.3 a
S(E) = 1 (super-allowed) 

(modified by final states, recoil corrections, 
radiative corrections, ...)

Magnetic Adiabatic Collimation with Electrostatic Filter

➔Adiabatic transport,  μ = E⊥/ B = const.

B drops by 2·104 from solenoid to analyzing plane,  E⊥  → E||   

➔Only electrons with EII > eU0 can pass the retarding potential 

➔Energy resolution ΔE = E ,max, start⊥  · Bmin / Bmax ≈ 1 eV

A. Picard et al., NIM B 63 (1992)
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➔statistical uncertainty
σ(stat)     ≈ 0.018 eV²

➔systematic uncertainty
 σ(sys,tot) ≈ 0.017 eV²

 
➔  sensitivity for upper limit 

0.2 eV/c2 (90 % C.L.)
 
➔  5σ discovery potential:

 m(νe) = 0.35 eV

KATRIN 
design  

sensitivity: 
 

5 year 
measurement 

(eff. 3 y of 
data)

First measurements
➔ CKrS positioning inside the flux tube via two motors

➔Ability to illuminate each of the 148 detector pixels 
for full spectrometer characterization

➔Safety software and hardware end switches to 
prevent collisions with the beam-tube

83mKr film preparation

Experimental setup

Summary/Outlook
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Motivation and features
➔Energy calibration of KATRIN by a 

nuclear standard
➔Meta stable 83mKr is condensed  

onto a Highly Oriented Pyrolytic 
Graphite (HOPG) substrate

➔Isotropically emitting conversion 
electron source

➔Several nearly mono-energetic 
lines of different energy to check 
the transmission function

➔K-32 line near the tritium endpoint
➔Short life-time of 83mKr prevents 

contamination of spectrometers
➔Motion system allows for per-pixel 

calibration
➔Energy stability of conversion lines 

in the ppm range demonstrated at 
former Mainz Neutrino experiment

➔In-situ monitoring of film 
properties via laser ellipsometry

➔For defined starting conditions, the substrate is heated up to around 120 K 
and then ablated with a frequency doubled Neodym-YAG-Laser (2 W @ 532 
nm) before it is cooled down to 27 K

➔After opening the valve to the rubidium generator, the gaseous krypton 
streams through a capillary towards the cold substrate

➔Radioactive 83mKr is continuously condensed onto the HOPG substrate

➔Count rate development 
after first inlet has been 
measured with stability 
runs at a fixed 
spectrometer voltage 
(31212 V)

➔The conversion electron 
rate saturates after 
about 15 hours and 
follows the 83Rb half-life 
(86.2 d*) in the long 
term

➔CKrS is installed at the end 
of the Cryogenic Pumping 
Section

➔Subsystems are placed on a 
scaffolding, which can be 
driven vertically as well as 
horizontally

➔This allows film preparation 
and ellipsometry 
measurements outside of 
the beam-tube

➔Insertion and retraction is 
fast, so calibration runs with 
the CKrS do not interfere 
with neutrino mass 
measurements

➔The lift can be put onto high 
voltage to shift the K-32 
conversion line to the 
tritium endpoint energy

Laser ellipsometry system
➔ Thin film investigation by measuring polarization 

changes upon reflection
➔ Null ellipsometry: find polarizer and compensator 

angle for which the reflected light is minimal, this 
depends on refractive index and film thickness

➔ Condensation of radioactive krypton alone should 
not lead to a shift since the used amount is too low 
to yield an observable effect

➔ Ellipsometry can be used to monitor the vacuum 
conditions very precisely and to produce input data 
for modeling of the film 

Line stability
➔Drift of line position towards lower 

energies over time
➔Energy seems to stabilize for 

longer times
➔Same behavior for different lines
➔Positive krypton ion and its image 

charge in the substrate form a 
bound system

➔Binding energy is given to the 
electron as additional kinetic 
energy

➔As more residual gas condenses 
onto the substrate, the distance 
between a decaying krypton atom 
and the substrate becomes larger 
and the binding energy decreases

➔Assuming a linear growth (backed 
by ellipsometry data) the line 
position can be fitted with the 
image charge model

➔For use as a calibration source the 
energy stability must be improved 
via bake-out and pre-plating

Ellipsometry measurements

➔Large amounts of 
stable krypton can be 
condensed onto the 
substrate for tests

➔Data can be compared 
to a calculated 
“ellipse” or film 
parameters can be 
extracted via the 
Holmes method* 
(analytical solution of 
the inverse ellips-
ometry problem)

➔For the radioactive 
films the growth is 
linear and the rate 
decreases for later 
films

➔This indicates an 
improvement of the 
vacuum conditions 
over time

➔The ellipsometry 
system may also 
provide additional 
information about the 
structure of the film

➔The Holmes method 
yields a growth speed of 
0.095 monolayers/h 
krypton equivalent for 
the last film, whereas the 
image charge fit gives 
0.029 monolayers/h 
➔ further investigations 

required

➔Successful commissioning of the CKrS @ 
KATRIN, conversion electrons can be 
analyzed by the spectrometer and 
detected at the FPD

➔Rate stabilizes around 15 hours after 
beginning of film preparation

➔Drift of line positions with time
➔can be explained by the image charge 

model and residual gas freezing onto 
the substrate

➔backed by ellipsometry data
➔need for better vacuum conditions 

and additional methods (e.g. pre-
plating) to stabilize the line energy

➔extended bake-out this June
➔Ellipsometry measurements provide 

valuable data and allow for in-situ 
measurements of film properties
➔additional data about the residual gas 

composition from a RGA can be 
included for the next measurements

➔Next measurements with the 
spectrometer and detector system in 
July & August with two main goals:
➔1. find a configuration where the line 

position is stable over several 
hours/days

➔2. scan the analyzing plane of the 
main spectrometer to map 
inhomogeneities and check the 
alignment of the subsystems
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