The Astrophysics Program of the NOvA Neutrino Experiment

Matthew Strait

For the NOvA Collaboration

University of Minnesota

The NOvA detectors, designed primarily to discover and measure electron neutrino appearance in a muon neutrino beam, are versatile instruments being used for a variety of astrophysical analyses.

The NOvA Detectors

14,000 ton

- Segmented liquid scintillator detectors Far detector on the surface
- Near detector underground, 300 meters water equivalent
- All data continuously digitized
- Buffered for ~20 minutes while trigger decisions are made
- Triggers can request a data time window of 50µs to 45 seconds
- Enables rich non-oscillation physics program

NOvA Preliminary 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07 Date (year-month)

• Origin of effect is unknown, but

thought to be caused by secondary

interactions of pions in the denser

- Total muon rate underground is well-known to be higher in the summer
- MINOS observed winter maximum for multiple muons
- NOvA now confirms this using our Near Detector
- Far Detector analysis underway

Supernova Neutrinos

See poster #13 in this session.

Dark Matter

Far Detector

Matter Particles

E_{CM}~100GeV

- Search for dark matter annihilation in the Sun
- v_u interact under and inside Far Detector • Trigger on upwards-going muons at night
- Distinguished from downward-going cosmic

muons primarily by timing: using loglikelihood ratio (LLR) between upward and downward hypotheses NOvA Preliminary

Gravitational Wave Coincidence

• ND 100% live for ~100MeV and up

Analysis of existing events underway

• At GeV and above, tracks point to source

Sensitive to MeV-PeV signals

• Near and Far detectors up for all six LIGO/Virgo events

• FD 100% live for certain event topologies ≥1GeV, otherwise 1.4%

Time since event (s)

- estimate: day sample
- twilight sample

Neutrinos

Background event from daytime sample: Probably an atmospheric neutrino

Magnetic Monopoles

- Magnetic monopoles predicted by various grand unified theories
- Not much theoretical guidance on the mass
- $10^5 10^{18} \text{ GeV}$
- NOvA Far Detector is unique in being a large tracking detector on the surface
- Sensitive to low mass monopoles that would range out before reaching underground detectors
- Slow monopoles, β < 0.01 are detected via unmistakable slow track
- Fast monpoles, $\beta > 0.01$ are detected by consistent highly ionizing straight track
- 1000 live-days of monopoletriggered data on tape as of May 2018

Neutron/Anti-neutron Oscillations

- Search for $n \rightarrow n$ conversion in 12 C
- Conversion suppressed in nuclei, but less in carbon than oxygen: advantage over water detectors
- Typical signature is several annihilation pions in a momentum-symmetric star
- Despite being on the surface, expect to be limited by the **atmospheric neutrino** background with ~10kt fiducial mass
- Will begin triggering on $n \rightarrow n$ -like events summer 2018

arXiv:1109.4227

East/West Effect

- Measurement of the east/west asymmetry of the low energy cosmic ray muon flux
- Caused by Earth's magnetic field: some trajectories of low energy primaries are forbidden
- Measurement of the field and its impact on cosmics is an input for low-energy atmospheric neutrino simulations
- Must be disentangled from detector overburden asymmetries

