

LATEST MEASUREMENTS OF ATMOSPHERIC NEUTRINO OSCILLATION PARAMETERS WITH ICECUBE-DEEPCORE

Elim Cheung for the IceCube Collaboration

Introduction

- PRL2018 [1] and Preliminary are two independent analyses. Both • measure atmospheric neutrino oscillation parameters Δm_{23}^2 and $\sin^2 \theta_{23}$; • use 3 years of IceCube-DeepCore data (2012 to 2014);
- study atmospheric neutrinos between 5 and 56 GeV from all sky.

The IceCube Neutrino Observatory with DeepCore

- IceCube is a set of optical sensors located at the South Pole station.
- DeepCore, a denser subset of IceCube, pushes the energy threshold down to 5 GeV.
- Cherenkov radiation is detected by optical sensors.

Fig. 2: The structure of the neutrino detector.

Fig. 4: Neutrinos are detected from Cherenkov radiation induced when relativistic charged leptons, produced from charged-current (CC) neutrino interactions, pass through the Ice.

Fig. 1: (left) Atmospheric neutrinos passing through the Earth and arriving at the IceCube-DeepCore detector at different $\cos \theta$. (right) The $v_{\mu} \rightarrow v_{\mu}$ survival probability for ranges of $\cos \theta$ and energies, assuming world averaged best fit values of oscillation parameters [2].

0.04 0.03 0.02 0.01 Absorption (m⁻¹)

Fig. 3: The top and side views of IceCube-DeepCore.

Selection

Main differences in event selection between two analyses.

	PRL2018[1]	Preliminary			
with relative DOM efficiency	\checkmark	×			
selection method	straight cuts + 1 BDT	straight cuts + 2 BDTs			
reconstruction	charge-dependent	charge-independent			
	15m track length segments	5m track length segments			
background modeling	data driven	MC			
Tab. 1: Differences in the selection methods between two independent analyses.					

Reconstruction

- Reconstruction assumes a cascade + track hypothesis.
- Cascade brigtness scales with energy.
- Track is minimum ionizing with an energy loss of 0.2 GeV/m.

• Main differences in analysis method.

• Both analyses minimize χ^2 per bin.

$$\chi^{2} = \sum_{i \in \{bins\}} \frac{(N_{i}^{exp} - N_{i}^{obs})^{2}}{N_{i}^{exp} + (\sigma_{i}^{exp})^{2}} + \sum_{j \in \{syst\}} \frac{(s_{j} - \hat{s}_{j})^{2}}{\sigma_{s_{j}}^{2}}, \quad (1)$$

• Hyperplane is used in Preliminary for a continuous space across all detector systematics.

Analysis Method w/ Systematics

Fig. 9: MC template from Preliminary. All track-like events have reconstructed energy above 10 GeV. World averaged best fit values of oscillation parameters [2] are assumed

- 16 systematic uncertainties are considered in Preliminary, including bulk ice properties (absorption and scattering).
- Two examples of systematic effects from absorption and v_e/v_μ flux ratio.

Fig. 5: Reconstruction fits the expected to observed charges. 8 parameters: vertex positions (x, y, z), interaction time, directions (zenith and azimuth angles), cascade energy, and track length segments. Figure adapted from [3].

Fig. 8: A hyperplane is applied per bin per event. Two simplified examples are shown from one of v_{μ} CC (left) and atm μ (right) bins.

- Preliminary uses track length as PID: cascadelike events between 0 and 50m, and track-like events between 50 and 1000m.
- MC template from Preliminary in 8 energy \times 10 $\cos \operatorname{zenith} \times 2 \operatorname{track} \operatorname{length} \operatorname{bins}.$

Fig. 10: Percentage change in event count per rate when the nuisance parameter related to absorption is pulled up by 1σ .

Fig. 11: Percentage change in event count per rate when the nuisance parameter related to v_e/v_μ flux ratio is pulled up by 1σ .

Results

Conclusion

v_e/v_μ ratio	$1.0 \pm (0.2, 0.05)$	1.25	1.03	
Hadronic flux, zenith dependent [σ]	0.0 ± 1.0	-0.55	-0.21	
Hadronic flux, energy dependent [σ]	0.0 ± 1.0	-0.56	-0.70	
ν spectral index $\Delta \gamma_{\nu}$	0.0 ± 0.1	-0.02	-0.05	
Neutrino event rate [% of norminal]	-	85	91.8	
Atmospheric Flux Parameters				
Coincident $v + \mu$ fraction [%]	0.0 ± 10	-	3	
μ spectral index γ_{μ} [σ]	0.0 ± 1.0	-	0.11	
μ fraction [%]	-	5.5	8.1	
Cross Section Parameters				
Quasi elastic M_A^{CCQE} [GeV]	$0.99^{+0.248}_{-0.149}$	-	0.89	
Resonance M_A^{CCRES} [GeV]	1.12 ± 0.22	0.92	0.96	
ν NC relative normalization	1.00 ± 0.2	1.06	1.02	
Detector Parameters				
Overall optical efficiency [%]	100 ± 10	102	98	
Relative optical efficiency, lateral [σ]	0.0 ± 1.0	0.2	0.22	
Relative optical efficiency, head-on	-	-0.72	-0.84	
Bulk ice, absorption [%]	100 ± 10	-	101	
Bulk ice, scattering [%]	100 ± 10	-	103	

Tab. 3: Best fit values of all parameters; both analyses prefer normal ordering. For v_e/v_{μ} , PRL2018 applies a prior of 20%, while Preliminary has a tighter prior of 5%.

channel from data and best fit to that from null hypothesis.

Fig. 13: (top) 1D $\Delta \chi^2$ in sin² θ_{23} from Preliminary and PRL2018. (right) 1D $\Delta \chi^2$ in Δm_{23}^2 . (bottom left) Contours from Preliminary (in blue) and PRL2018[1] (in gray) compared to results from T2K[4], SK[5], MINOS[6], and NOvA[7].

• Preliminary result supports PRL2018 within statistical fluctuation. • Both analyses agree with other long baseline neutrino experiments.

 [1] The IceCube Collaboration. In: <i>Phys. Rev. Lett.</i> 120.7 (2018), p. 071801. arXiv: 1707.07081 [hep-ex]. 	 [5] The SK Collaboration. In: <i>Phys. Rev.</i> D97.7 (2018), p. 072001. arXiv: 1710. 09126 [hep-ex].
 [2] I. Esteban et al. In: <i>JHEP</i> 01 (2017), p. 087. arXiv: 1611.01514 [hep-ph]. [3] M. Leuermann. Pending. Ph.D. Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen, 2018. 	 [6] The MINOS Collaboration. In: Nucl. Phys. B908 (2016), pp. 130–150. arXiv: 1601.05233 [hep-ex].
[4] The T2K Collaboration. In: <i>PoS</i> EPS-HEP (2017), p. 112. arXiv: 1709.04180 [hep-ex].	[7] The NOvA Collaboration. In: <i>Meeting of the APS Division of Particles and Fields</i> . 2017. arXiv: 1710.03829 [hep-ex].

Elim Cheung: elims@icecube.wisc.edu Joshua Hignight: hignight@ualberta.ca