Updated $\bar{\nu}_u \rightarrow \bar{\nu}_e$

Oscillation Search at 12K

1) Introduction

```
T2K is a long-baseline \nu oscillation
experiment located in Japan, which aims to
measure \nu_{\mu} \rightarrow \nu_{e} oscillations and the not
yet observed \bar{\nu}_{\mu} \rightarrow Guper-K event samples:
\bar{\nu}_e oscillations to • \nu mode 1-ring \mu-like
determine the • \bar{\nu} mode 1-ring \mu-like
                        • ν mode 1-ring e-like
parameters of the
                        • v_e CC1\pi^+-like
PMNS matrix.
```

2) Overview

To search for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillations a statistical test of the significance for any observed signal is constructed in the following way:

Modify the oscillation probability with a new parameter, β

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \to \boldsymbol{\beta} \cdot P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$

Null hypotheses a) No $\bar{\nu}_e$ appearance ($\beta = 0$)

b) PMNS $\bar{\nu}_e$ appearance ($\beta = 1$)

Francis Bench

University of Liverpool

For the T2K collaboration

Two test statistics for each hypothesis

- Number of \bar{v} mode 1-ring e-like events: rate-only analysis
- $\Delta \chi^2 = \chi^2 (\beta = 0) \chi^2 (\beta = 1)$: rate+shape analysis

 $(\chi^2 \text{ values calculated by marginalising all systematic and oscillation parameters)}$

Signal/Background Separation 5) with Charged Lepton Kinematics

Spectra have been produced using T2K data obtained in period 2010 – Dec. 2017 (T2K Run 1-9c) at an exposure of 1.49×10^{21} Protons On Target (POT) in ν mode and 1.12×10^{21} POT in $\bar{\nu}$ mode. θ is the angle between the incoming ν and outgoing e trajectories.

3) Method

- Generate 20k pseudo-data sets by sampling the control sample (see sec. 1) oscillation parameter space around the maximum likelihood to constrain the oscillation and systematic model parameters
- Calculate test statistics for each pseudo-data set
- Make distributions of each test statistic for each hypothesis
- Compare to the data test statistic to obtain p-values

4) Sensitivity to $\overline{\nu}_e$ Appearance

Expected sensitivities are generated using an Asimov dataset in place of the

ß	Analysis	p-value	σ
	Rate-only	0.036	2.1

data. This uses oscillation parameters close to the normal hierarchy PDG $\sin^2(\theta_{23}) = 0.528,$ with values $\sin^2(\theta_{13}) = 0.0219, \delta_{CP} = -1.601$ and $\beta = 1$.

0 2.5 0.0128 Rate+shape 0.386 0.9 Rate-only **8.**0 0.426 Rate+shape

 \bar{v} mode 1-ring e-like expected and observed spectra, $v_e \& \overline{v}_e$ intrinsic beam components

11.75 events were expected (6.47 background + 5.28 signal), but only 9 events were observed. The data are more consistent with the $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{e} \& \bar{\nu}_{e}$ intrinsic beam backgrounds than the $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ signal.

Rate-only analysis

Rate+shape analysis

6) Data Results

With the current statistics, T2K is unable to exclude either no $\bar{\nu}_{\rho}$ appearance or PMNS $\bar{\nu}_e$ appearance. More antineutrino data is currently being collected, potentially providing a stronger constraint on $\bar{\nu}_e$ appearance.

β	Analysis	p-value	σ
0	Rate-only	0.209	1.3
0	Rate+shape	0.215	1.2
1	Rate-only	0.210	1.3
T	Rate+shape	0.092	1.7