

Background independent measurement of θ_{13} with the Double Chooz experiment

Diana Navas, Pau Novella on behalf of the Double Chooz Collaboration

THE DOUBLE CHOOZ EXPERIMENT

In reactor experiments, the determination of the θ_{13} mixing angle is extracted via the survival probability of $\bar{\nu}_e$:

$$P_{\overline{\nu}_e \to \overline{\nu}_e}(L, E) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right)$$

455 days FD-I (single detector)

MULTI-DETECTOR ANALYSIS

- 363 days FD-II (multi-detectors)
- 258 days ND (multi-detectors)

THE REACTOR RATE MODULATION (RRM) APPROACH

 θ_{13} and cosmogenic BG rates (BG) are determined simultaneously by comparing the observed $ar{
u}_e$ candidates rate (R^{obs}) with the expected one (R^{exp}) for different reactor power conditions:

 $R^{obs} = BG + R^{exp} = BG + (1 - sin^2(2\theta_{13})\eta_{osc}) R^{v}$

During 2-Off period, a few β -decays in the reactor core: RESIDUAL ν emitted

SYSTEMATICS UNCERTAINTIES

	Detector	Parameter	Uncertainty	Correlated
Detection efficiency	FD	ϵ^{FD}	$\sigma_{\text{det}}^{\text{FD}}$ = 0.39%	No
	ND	ϵ^{ND}	$\sigma_{\rm det}^{\rm ND} = 0.22\%$	No
Reactor flux	FDI	$lpha_{ m B1}^{ m FDI}\omega_{ m B1}^{ m FDI}$, $lpha_{ m B2}^{ m FDI}\omega_{ m B2}^{ m FDI}$	$\sigma_{\mathrm{R}}^{\mathrm{FDI}}$ = 0.91%	No
	FDII	$lpha_{B1}\omega_{\mathrm{B1}}^{\mathrm{FDII}}$, $lpha_{B2}\omega_{\mathrm{B2}}^{\mathrm{FDII}}$	σ_{R} = 0.91%	No
	ND	$lpha_{B1}\omega_{\mathrm{B1}}^{\mathrm{ND}}$, $lpha_{B2}\omega_{\mathrm{B2}}^{\mathrm{ND}}$	σ_R = 0.91%	No

Residual v rate in FDI in the 2-Off period $\alpha_v = 0.584 \pm 0.175 \,\mathrm{day^{-1}}$

Overall normalization and correlated errors included in η_{norm} ($\sigma_{norm}=1.4\%$), dominated by the constraint imposed by Bugey4 data

OSCILLATION AND COSMOGENIC BG FIT

Rate-only fit that relies on a χ^2 minimization:

@Imag'in IRFU

$$\chi^{2} = \sum_{i} \chi_{i}^{2} + \chi_{FD-off}^{2} + \chi_{BG}^{2} + \chi_{pen}^{2} + \chi_{norm}^{2}$$

$$\sum_{i} \chi_{i}^{2} = \chi_{FDI}^{2} + \chi_{FDII}^{2} + \chi_{ND}^{2}$$

$$\begin{split} \chi_i^2 &= \left(\frac{1}{\sigma_{stat}^i}\right)^2 \left[R_{obs}^i - R_{exp}^i \left(1 + \eta_{norm} + \sum_{r=B1,B2} (\omega_r^i \alpha_r^i) + \varepsilon^i \right) - BG^i \right] \\ \chi_{FD-off}^2 &= 2 \left(N^{obs} ln \frac{N^{obs}}{BG_{FD} + N^{exp}[1 + \varepsilon^{FD} + \alpha^\nu]} + BG_{FD} + N^{exp}[1 + \varepsilon^{FD} + \alpha^\nu] - N^{obs} \right) \end{split}$$

2 WAYS OF PERFORMING RRM FIT:

- 1. Constrained background: priori knowledge of BG is required, θ_{13} determined with high precision
- 2. Unconstrained background: measurement of θ_{13} independent of the BG model and best fit values of the BG can be confronted to the BG model

BACKGROUND SOURCES:

COSMOGENIC BACKGROUND: FAST NEUTRONS + COSMOGENIC ISOTOPES (LI⁹)

$$\chi^2_{BG} = \sum_{i=FD,ND} \left(\frac{BG_i - BG_i^{exp}}{\sigma_{BG_i}^{exp}} \right)$$

- RRM fit: 1.0-8.5 MeV energy window
- Li⁹ extracted from candidates in the 8.5-12.0 MeV window:
 - Subtract FN estimation in the 8.5-20.0 MeV range
 - Remaining candidates in the 8.5-12 MeV provide the Li⁹ rate
 - Extrapolate rate to 1.0-8.5 MeV according to shape spectrum

RRM OSCILLATION FIT RESULTS

a. RRM fit with background constraint

 $\sin^2(2\theta_{13}) = 0.095 \pm 0.016$

b. RRM fit without background constraint

- BG treated as free parameter in the fit
- $\sin^2(2\theta_{13}) = 0.090 \pm 0.023$
- θ_{13} independent of the BG model
- $BG_{FD} = 4.0 \pm 0.7$, $BG_{ND} = 30.7 \pm 5.0$ events/day (FN+Li⁹) consistent within 10 with the BG model
- The constraint on the total BG rate given by the 2-Off data improves precision of θ_{13}
- c. Crosscheck of the Rate+Shape fit
 - Same energy window (1.0-20.0 MeV) assumed
 - $\sin^2(2\theta_{13}) = 0.110 \pm 0.018$
 - R+S fit: $\sin^2(2\theta_{13}) = 0.105 \pm 0.014$

- d. Flux normalization consistent with expectation: $\eta_{norm} = -0.1 \pm 0.7 \%$
 - Fit compatible with flux reactor model
 - σ_{norm} is reduced from 1.4 % to 0.7 % thanks to relative comparison FD to ND

