

Neutrinos from decays of stopped atmospheric muons in the Earth

Wan-lei Guo, Institute of High Energy Physics, Beijing, China

Abstract

We explore the neutrinos from decays of stopped atmospheric muons μ^{\pm} in the Earth. In terms of the atmospheric muon flux at the sea-level and the average muon range, we derive the depth distribution of stopped muons in the Earth. The stopped μ^- can be captured by different nuclei in the rock. Based on the mean-life of captured μ^- and the average muonic capture probabilities of different elements, we find that about 60% stopped μ^- can decay and produce the low energy neutrinos (< 53 MeV). Then we calculate the v_e , \bar{v}_e , v_μ and \bar{v}_μ fluxes from all stopped μ^+ and μ^- in the Earth, which have about 10%, 6%, 3% and 7% of the corresponding atmospheric neutrino fluxes for 1km detector depth. The new neutrino source is very helpful for us to investigate the diffuse supernova neutrinos and some related topics.

Atmospheric muon flux at the sea-level **Modified Gaisser formula [1] (> 1 GeV):**

Stopped muon depth distribution

Muon energy loss: $-\frac{dE_{\mu}}{dL} = a + bE_{\mu} \rightarrow$ muon range \rightarrow muon depth X

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

μ^- capture and decay

- μ^{-} stops in a single element material:
- **1.** Atomic capture \rightarrow muonic atom
- 2. Muonic cascade \rightarrow Auger e^- and X-rays

μ^- stops in a compound material:

We should consider muonic per atom Coulomb capture ratios for different elements. Egidy and Hartmann [4] find a semi-empirical approach and simply assessed the capture probability P(Z) for an element, normalized to 1 for oxygen.

μ^- stops in the rock:

Elements	Mass (%)	Number(%)	P(Z)	Muonic atom (%)	$ au_{\mu^{-}}$ (ns)	Huff factor	Decay ratio (%)
0	47.51	62.14	1.00	60.26	1795.4	0.998	81.56
Si	31.13	23.89	0.84	19.46	756	0.992	34.14
Al	8.15	3.91	0.76	2.88	864	0.993	39.05
Fe	3.92	2.27	3.28	7.21	206	0.975	9.14
Ca	2.57	2.07	1.90	3.81	332.7	0.985	14.92
Na	2.43	2.27	1.00	2.21	1204	0.996	54.58
K	2.32	1.28	1.54	1.91	435	0.987	19.54
Mg	1.50	1.99	0.93	1.79	1067.2	0.995	48.33
Ti	0.38	0.17	2.66	0.45	329.3	0.981	14.70
Р	0.07	0.02	1.04	0.02	611.2	0.991	27.57
$D_{\mu^{-}} = 60.65\%$							

3. Nuclear capture or decay

$$\succ \mu^{-} + {}^{16}\text{O} \rightarrow {}^{16}\text{N} * + v_{\mu}$$
$$\Rightarrow \mu^{-} \rightarrow e^{-} + \bar{v}_{e} + v_{\mu}$$

Neutrino energy spectrums:

 $f_{\bar{\nu}_{\mu}} = \frac{64}{m_{\mu}} \left[\left(\frac{E_{\nu}}{m_{\mu}} \right)^2 \left(\frac{3}{4} - \frac{E_{\nu}}{m_{\mu}} \right) \right]$ $f_{\nu_e} = \frac{192}{m_{\mu}} \left[\left(\frac{E_{\nu}}{m_{\mu}} \right)^2 \left(\frac{1}{2} - \frac{E_{\nu}}{m_{\mu}} \right) \right]$

Total nuclear capture rates:

 $\Lambda_{\text{total}} = \Lambda_{\text{capture}} + Q \Lambda_{\text{decay}}$ $\Lambda_{\text{total}} = \frac{1}{\tau_{\mu}}, \quad \Lambda_{\text{decay}} = \frac{1}{\tau_{\mu}}$ $\tau_{\mu^+} = 2196.98 \text{ ns}; Q:$ Huff factor; → Decay ratio $D_{\mu^{-}} = \frac{\Lambda_{\text{decay}}}{\Lambda_{\text{total}}} = Q \frac{\tau_{\mu^{-}}}{\tau_{\mu^{+}}}$

1. Mass (%) comes from the upper continental crust [5] 2. P(z) denotes average capture probability relative to 016 [4] 3. Water is a O16 target since $\mu^- p$ easily penetrate nearby atoms

Neutrinos from stopped muon decay

Numerical results

References

[1] M.Y. Guan, M.C. Chu, J. Cao, K.M. Luk and C.G. Yang, arXiv:1509.06176 [2] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 2014, 38(9):090001 [3] V.A. Naumov, "Atmospheric muons and neutrinos", hep-ph/0201310 [4] T.V. Egidy and F.J. hHartmann, Phys.Rev. A26 (1982) 2355-2360

[5] R.L Rudnick and S. Gao, 2003." Composition of the continental crust". pp. 1-64. [6] FLUKA05, G. Battistoni et al., Astroparticle Physics 23 (2005) 526–534 [7] Bartol88, T.K. Gaisser, T. Stanev and G. Barr, Phys.Rev. D38 (1988) 85 [8] Honda95, M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Phys.Rev. D52 (1995) 4985

XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018), Heidelberg, 4-9 June 2018