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Motivation for E61

- T2K-II sensitive to maximal CP violation at the 30 level. « e ums
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Hyper-K will be sensitive to dcp at 50 over a range of values.

Systematic errors result in diminishing returns as POT increases.
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Future long baseline experiments limited by systematic rather
than statistical uncertainty.

Major uncertainties from neutrino cross-section model, flux
constraint, and v, to v,, cross-section ratio measurements.
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Necessary to improve cross-section modelling and reduce model
dependence.
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Expected significance to observe CP violation at Hyper-K
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Nuclear models are hard to constrain with a typical near detector. d
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Hadronic state not well reconstructed.

(including multi-nucleon)
scatters in reconstructed
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measurements and provide a
unique constraint on nuclear models.

Many different models and energy loss

different for neutrinos and anti-neutrinos. , , ,
Can measure cross sections as a function of true neutrino energy.

Smaller near to far extrapolation systematic. b (GeVic) £, (GeV)
- For each oscillation hypothesis we want to test, we find a linear combination of the E61 off-

neutrino beam. axis fluxes to give the oscillated spectrum.

Instrumented portion of detector moves up and - With matched fluxes E61 event rate the same as oscillated SK event rate.

down through the shatft.
Spans 1-4 degrees from neutrino beam axis.

- E61 and SK have the same interaction material - same interaction cross-section.

- No cross-section model, no effect from wrong model choice.
Inner detector: 8 m diameter.

- Directly compare E61 muon p-§ prediction to observed SK events to obtain oscillation
parameters.

Applying method to simulated events

- Red: Use coetficients with E61 events to predict SK oscillated spectrum for muons with
momentum less than 1 GeV.

Optically separated outer detector: 10 m diameter.

Detector height: 8-12 m, optimised for distance
from target. ariv:1601.07459

Tank lined with multi-PMT modules that monitor
inner and outer volumes (see poster by T. Lindner).
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Pursuing a phased experimental approach with an initial prototype detector in a test beam.
Broad physics program:

oscillation measurement,

sterile neutrinos, cross

section measurements, LT
reactor neutrinos. , ,

- Prove that 1% level calibration can be achieved.
Measure physics processes, such as Cherenkov light profile and pion scattering.

- Assembly of mPMT modules scheduled for 2019, the prototype detector for 2020, and
operation to begin in 2021.




