

# Spectral measurement of electron antineutrino disappearance via neutron capture on hydrogen at Daya Bay

Qun Wu (Shandong University), on behalf of the Daya Bay Collaboration



### About 1.6 million events at Near sites and 0.4 million events at Far site (1230 days of data)

#### **Backgrounds**:

- Accidentals (Background/Signal: 12% @ Near site, 51%@ Far site)
- Muon-induced fast neutron; <sup>9</sup>Li/<sup>8</sup>He
- Calibration source induced: Am-C



 $P_{\overline{v}_e \to \overline{v}_e} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{1.267 \Delta m_{ee}^2 L}{E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{1.267 \Delta m_{21}^2 L}{E}$ 

 $\sin^2 2\theta_{13}$  and  $\Delta m_{ee}^2$ . *Phys. Rev. D* **95**, 072006 (2017)

capture on Gd (nGd) provides the world's most precise measurement of

 $\Delta m_{ee}^2 \approx \cos^2 \theta_{12} \left| \Delta m_{31}^2 \right| + \sin^2 \theta_{12} \left| \Delta m_{32}^2 \right|, \quad \left| \Delta m_{32}^2 \right| \approx \left| \Delta m_{ee}^2 \right| \pm 5.2 \times 10^{-5} \text{eV}^2 \text{ for NH (-) /IH(+)}$ 

A relative rate + shape measurement using Inverse Beta Decays (IBDs) tagged by neutron

# From Energy Model for nGd to nH

- nGd: *Phys. Rev. D* **95**, 072006 (2017)  $- \frac{E_{\text{rec}}}{E_{\text{true}}} = f_{\text{scint}}(E_{\text{true}}) \cdot f_{\text{electronics}}(E_{\text{vis}})$  $f_{\text{scint}}(E_{\text{true}}) = \frac{E_{\text{vis}}}{E_{\text{true}}} = \beta_{\text{vis}} [f_q(E_{\text{true}}, k_B) + k_C f_C(E_{\text{true}})]$  $f_{\text{electronics}}(E_{\text{vis}}) = \frac{E_{\text{rec}}}{E_{\text{vis}}} = \beta_{\text{rec}} [1 + \alpha \exp\left(-\frac{E_{\text{vis}}}{\tau}\right)]$ 
  - Includes the nonlinearity from LS and readout electronics
  - Parameters obtained from various  $\Upsilon$  peaks and continuous <sup>12</sup>B  $\beta$ -spectrum
- nH : More energy leakage mainly for IBDs generated in LS and acrylic components - Trace  $e^+$  (from IBD) kinematic energy deposition process using Geant4-based MC Obtain the visible energy for each step during the lifetime of  $e^+$



Side-by-Side Comparison

#### Mapping between the reconstructed and true energy for nGd



- For annihilation  $\gamma$ 's, apply the gamma-scintillator nonlinearity curve
- Sum over the visible energy and apply the electronics nonlinearity curve to get the reconstructed energy





# **Comparison between measured and** expected positron spectrum (assuming no oscillation)



Energy model validation

- Agrees with nGd model for IBDs reconstructed in GdLS region
- Prediction of <sup>12</sup>B  $\beta$ -spectrum agrees with data for GdLS and LS region
- Agrees with an independent energy model considering secondary particle generation in gamma-energy-deposition process

## NEUTRINO 2018 – XXVIII INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS JUNE 4-9, 2018 HEIDELBERG