Measuring the v_{μ} CCO π cross section on lead at the T2K near detector

(1

Tomasz Wąchała, The H. Niewodniczanski Institute of Nuclear Physics PAN, Kraków, Poland, On behalf of the T2K Collaboration

Former UA1/Nomad magnet: magnetic field of 0.2T to measure particle momenta and charges. Partially instrumented with scintillators (SMRD) for the measurement of the muon momenta from their ranges in iron.

Tracker: 2 FGDs of plastic scintillator layers (FGD2: scintillator/water layers), 3 **TPCs** particle tracking, momentum and charge measurement and particle ID

*Accelerator, long-baseline neutrino experiment located in Japan [1]. **Neutrino beam** with energy peak at 0.6 GeV.

*Two main detector stations: near detectors (ND280 and INGRID) located at 280 m and **Super-Kamiokande** at 295 km from the beam target.

Goals: Measure the parameters of neutrino oscillations and understand neutrino interactions with nuclei

 $\star \pi^0$ detector (**POD**): water/brass or lead layers interleaved with scintillator (carbon) layers.

♦ ECAL: scintillator/lead layers to improve track/shower separation

1. Motivation

*Investigate the effect of the nuclear environment on CC0 π interactions muon + no mesons + any number of nucleons) in the low energy region.

Understand the A-dependence of the neutrino-nucleus cross section in the perspective of argon-target experiments.

The measurement can help discriminate between different models of both initial state nucleons and final state interactions.

2. Selection strategy

Analysis combines the information from two sections of ND280 detector: POD and Tracker (FGD & TPC)

Developed inter-detector reconstruction algorithms to improve the efficiency of selecting neutrino interactions in POD and Tracker

4. Selection results and systematic errors

Reconstructed muon momenta (p) and cosine of the angle (cos θ) for the signal sample

Composition of the signal sample and sideband samples:

- 1) At least 1 POD-TPC track 2) Find highest momentum negative track in POD and Tracker
- 3) Track quality + fiducial volume cut (POD)
- 4) Upstream POD tracks veto cut 5) Muon likelihood cut

1) Find highest momentum negative track in TPC/ FGD1 2) Track quality + fiducial volume cut (FGD1) 3) Muon and proton likelihood cut (TPC) 4) No Michel electrons 5) ECAL particle identification cut 6) ECAL π^0 veto cut 7) Time of flight cut

 $CC0\pi$ on Carbon

Systematic errors:

• Detector simulation: POD and Tracker related uncertainties and their correlations • Flux modelling

• Cross section model uncertainties

5. Cross-section extraction

*Measurement of the cross section in the bins of true muon momentum and $\cos \theta_{\mu}$.

Simultaneous fit of three samples: $CC0_{\pi}$ on lead, CC0 π on Carbon and CC1 π + CC Other using maximum likelihood fitter [2].

Detector, flux, cross section model systematic uncertainties are implemented as nuissance parameters. Correlations are taken into account via covariance matrices.

3. Efficiency, purity and binning

References

[1] Nucl.Instrum.Meth. A659 (2011) 106-135 [2] Phys. Rev. D 93, 112012 (2016), arXiv:1802.05078

6. Future plans

*Fit validation and 'pseudo' data studies. Finalizing the measurement of the differential CC0 π Pb cross section. Comparisons of the predictions of various models for heavy target neutrino interactions with NUISSANCE. • Possible Pb/Carbon CC0 π ratio measurement.

Acknowledgements

This work was supported by the Polish National Science Center (NCN) grant 2015/17/D/ST2/03533 and PL-Grid infrastructure

0.8