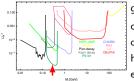

Search for heavy neutrinos with the T2K experiment Poster # 43, Wednesday session Presenter: M. Lamoureux

How to explain neutrino masses (and consequently oscillations)?

A natural extension is one with 3 new right-handed neutrinos (**sterile**):



How to detect heavy neutrinos?

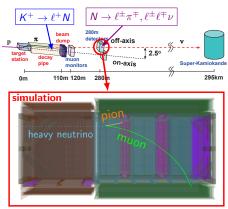
• N_l couple to W and Z with a strength $U_{\alpha l}^2 \equiv |\Theta_{\alpha l}|^2 \sim \mathcal{O}\left(\frac{m_{\nu}}{m_{\nu}}\right)$

$$W$$

 $\psi_{\alpha}^{\mu}\theta_{\alpha I}$
 ℓ_{α}

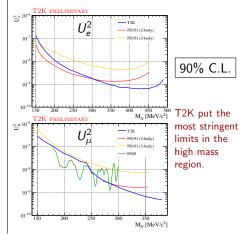
- Can be produced e.g. in colliders or in **meson decays** (arXiv:1502.00477).
- For $0.1 < M_N < 100 \text{ GeV}/c^2$, we have $U_{\alpha}^2 \sim 10^{-10} 10^{-8}$.

90% limits from current experiments on the mixing of heavy neutrinos to electron and muon.


Search for heavy neutrinos with the T2K experiment Poster # 43, Wednesday session Presente

Presenter: M. Lamoureux

Detection in T2K:


Heavy neutrinos are produced alongside standard neutrino beam.

They propagate and can decay in T2K near detector $\textbf{ND280} \rightarrow$ detection of 2 particles with opposite charges.

Analysis and results:

- Remaining background after selection: less than 2 evts (from active ν int.)
- Bayesian approach, marginalization with a Markov Chain Monte Carlo.

