Low-background techniques for neutrino physics searches with DARWIN

G. Eurin, M. Lindner, T. Marrodán Undagoitia, H. Simgen for the DARWIN collaboration, eurin@mpi-hd.mpg.de

The DARWIN experiment [2]

• TPC dimensions: **2.6m x 2.6m** • **50t LXe** (total), **40t LXe** (TPC) • Exposure target: **200 t**×**yr**

DARWIN

MAX-PLANCK-INSTITUT

FÜR KERNPHYSIK

HEIDELBERG

- Key components: **PMTs or** SiPMs, low-background cryostat, PTFE reflector pannels, copper field-shaping rings
- External background reduction: Water Cherenkov shield, liquid

Direct Dark Matter detection: Current major experimental challenge LXe dual-phase Time Projection Chamber: One of the most promising techniques

Scheme of the DARWIN detector

DARWIN collaboration: **27** institutes

scintillator neutron veto, underground installation (possibly LNGS)

Possible background and neutrino signals in DARWIN [3]

Predicted background spectrum from detector materials and internal contamination.

Nuclear recoil spectrum for CNNS from ν_{\odot} , diffuse supernova background and ν_{atm} .

Predicted spectrum zoomed in the ROI for $0\nu\beta\beta$ of ^{136}Xe for 6t fiducial mass.

222**Rn Background sources:** Prior material selection by screen-Strategy: Prior emanation measurement, cryo-

genics distillation & surface treatment

Materials

 $2\nu\beta\beta$ Irreducible for ing, fiducialization at analysis level $0\nu\beta\beta$ searches

⁸⁵Kr

Remote monitoring, cryogenics distillation

Radon emanation principle

- Sample in vessel **until equilibrium**
- AutoEma: automatized and reproducible extraction from vessel \Rightarrow High throughput
- Filling in highly sensitive (20 μBq) α -decay detector: proportional counter
- Results stored in **GeRn database** @ **MPIK**

Surface treatment R&D

- Surface cleaning for material in LXe
- Sources of impurities: residues from construction, ²²²Rn daughters, dust, etc.
- Investigated strategies:
 - Metal coating of the surface
 - Strong acids chemical treatment
 - Subsequent surface protection
- Proof of treatment compatibility with LXe TPC operation:

γ -spectrometry

- High Purity Germanium γ -spectrometers
- Non-destructive method for solid samples
- Material screened and selected according to their radio-purity
- Several HPGe's available in the collaboration: GIOVE @MPIK [5], GeMPI&GATOR **@LNGS, GeMSE @Uni. Freiburg**

AutoEma and a proportional counter

The GIOVE HPGe detector

⁸⁵Kr measurements

Mass spectrometer of the RGMS

- Krypton: intrinsic background source
- Contamination in LXe monitored with a **Rare-Gas Mass Spectrometer** [4]
- Sensitivity of 8 ppq and contamination at sub-ppt levels measured

References

Planck collaboration, P. A. R. Ade et al. Astron. Astrophys., 571, 2014.

[2] J. Aalbers et al. *JCAP*, 1611:017, 2016.

[3] L. Baudis et al. *JCAP*, 1401:0444, 2014.

S. Lindemann and H. Simgen EPJ C, 74, 2014. 4

G. Heusser et al. *EPJ C*, 75, 2015. $\left[5\right]$