

# **Measurement of the evolution of reactor** antineutrino flux and spectrum at Daya Bay Phys. Rev. Lett. 118, 251801



David Martinez Caicedo, Illinois Institute of Technology on behalf of Daya Bay Collaboration

- Data

Full uncertainty

- ILL+Vogel

**Reactor uncertaintv** 

### Introduction

- Reactor antineutrino experiments observed deficit in antineutrino rates compared with predictions
- Experiments at Low Enriched Uranium (LEU) reactors, including Daya Bay, observed spectral deviations



20000

15000

10000

5000

## Results: Flux Evolution

- IBD/day depends on many timedependent quantities:
  - Reactor status and thermal power
  - Power released per fission
  - Detector livetime

energy ranges

Slope is different

ranges.

with  $F_{239}$ 

for different energy

This is the first

of this behavior

nuclear non-proliferation

- Results in terms of IBD/fission  $\sigma_f$ 
  - Take IBD/day and correct for time-dependent quantities on a week-by-week basis





0.6 10<sup>2</sup> Distance (m) 10<sup>3</sup> 10

#### Experiment Daya

- 8 'identical' detectors adjacent to the Daya Bay Power Plant in China:
- 4 near detectors constrain reactor antineutrino flux.
- 4 far detectors see if any neutrinos have disappeared.



## IBD Event Selection

- Scintillator E<sub>v</sub> - 0.8 MeV Gd(n,γ)  $\overline{\nu}_{e}$ ~8 MeV ~30µs
- Detect inverse beta decay (IBD) with liquid scintillator:  $\overline{\nu}_e + p \rightarrow e^+ + n$
- Coincidence of the prompt scintillation from the positron and the delayed neutron capture on

from Huber-Mueller model prediction at 3.1  $\sigma$ 

Results: Spectrum Evolution Analyze IBD prompt energy  $F_{235}$  $F_{235}$ 0.65 0.60 0.55 0.50 0.65 0.60 0.55 0.50 Examine evolution in 4 separate 1.04 --- Best fit Daya Bay 1.02  $S_{j/\overline{S}_{j}}$  1.00 \*\*\*\*\* 0.98  $E_p = 2 - 4 \text{ MeV}$  $_{0} = 0.7 - 2 \text{ MeV}$ 0.96  $dS_j/dF_{239}$ =-0.16  $\pm$  0.07  $\overline{S}_{j_1}^{-1} dS_j/dF_{239}$ =-0.23  $\pm$  0.04 IBD spectrum is changing 1.04 1.02  $\overline{S}_{j}$ 1.00  $S_{j}$ 0.98 unambiguous measurement  $E_{\rm r} = 6 - 8 \,\,{\rm MeV}$ 0.96  $\overline{S}_{j}^{-1} dS_{j}/dF_{239}$ =-0.69  $\pm$  0.12  $dS_{j}/dF_{239}$ =-0.49  $\pm$  0.05 0.35 0.25 0.30 0.30 0.35 0.25 Highly relevant to  $\overline{\nu}_e$  based  $F_{239}$ 



Gadolinium provides a distinctive  $v_e$  signature.

- IBD positron is direct proxy for antineutrino energy
- Veto (Cosmogenic backgrounds)
- Apply time coincidence and energy cuts
- Time difference between prompt and delayed signals: 1 us<  $\Delta_t$  < 200 us
- 2.5 million of IBDs in 1230 days of data taking

Fuel Evolution Analysis

- **Calculate 'effective fission fraction'** observed by each detector:
- We have fission fractions and IBDs versus time
- Compare IBDs from periods of differing effective fission fractions!





## Results: Filting Individual Isotopes

- Use the data to explicitly fit IBD/fission for <sup>235</sup>U, <sup>239</sup>Pu
  - Assume loose (10%) uncertainties on sub-dominant <sup>238</sup>U, <sup>241</sup>Pu
- Dominant uncertainties:
  - Statistics
  - Absolute detection efficiency
- The hypothesis of <sup>235</sup>U only being wrong fits the data well.
- <sup>239</sup>Pu matches model well  $\bullet$
- Other hypothesis can fit the data
- $^{239}$ Pu + steriles,  $^{235}$ U + steriles, at 2.8  $\sigma$ between others Summary Various reasons to question reactor  $v_e$  models: "The Reactor Antineutrino" Anomaly" and "Spectrum anomalies"



 $F_{239}$ 

Equal deficit of all isotopes disfavored

- Doing this by combining periods of common fission fraction.
- We choose 8 bins in <sup>239</sup> Pu effective fission fraction,  $F_{239}$



References

- Mueller et al. Phys. Rev. C 83, 054615 (2011)
- F. P. An et al, Chin. Phys. C 41(1) (2017) F.P. An et al, Phys. Rev. Lett. 118, 099902 (2017) •
- P. Huber PRC84 024617 (2011) • C. Giunti et al, 10.1007 JHEP10(2017) 143
- G. Mention et al, Phys. Rev. D 83, 073006 B. Littlejohn et al, Phys. Rev. D 97, 013003 (2018)
- Daya Bay flux and spectrum evolution results uncover <u>another</u> flaw: **flux** evolution is incorrectly predicted.
  - Indicates that incorrect flux predictions are partially responsible for reactor flux anomaly
- SBL reactor measurements at HEU cores are necessary for probing the nature of the spectral anomaly