

Baikal-GVD – the Next Generation Neutrino Telescope in Lake Baikal

Zhan-Arys M. Dzhilkibaev (INR RAS, Moscow), Bair Shaybonov (DLNP JINR, Dubna) on behalf of the Baikal Collaboration

<u>Outline</u>

- Baikal-GVD (Gigaton Volume Detector) Phase I allows to investigate
 - Galactic and extragalactic neutrino point sources in TeV PeV energy range
 - Diffuse neutrino flux energy spectrum, local and global anisotropy, flavor content
 - Transient sources like GRB etc.
 - Dark matter indirect search
 - Exotic particles monopoles, Q-balls, nuclearities, ...
- The experiment looks like km³ scale 3D-array of photo sensors located deep underwater
- Flexible structure allows to rearrange of the main building blocks to change, for example, energy threshold
- High sensitivity and resolution of neutrino energy, direction and flavor content

Site:

- Location N51.765732° E104.415042°
- Depth of 1366 m at only 3.6 km from shore
- High deep water transparency (22 m) and low light scattering (30-50 m)
- Fresh water (simple mechanical solutions, no background from K40)
- No bioluminescence
- The most northern location allows observing the Galactic Center 18 hours per day

Baikal-GVD Phase I Array:

- 2304 Optical Modules (OM) in GVD Phase I
- OMs arranged in 8 Clusters with 8 Strings each
- Depth is 750 1275 m (91 m above the bed)
- 15 m between OMs in a String
- 300 m between Clusters

- Amplifier, HV DC-DC, • 10" PMT R7081HQE, Q_{off}≈0.35
- 17" Glass pressure-resistant
 - sphere
- Underwater 5-pin SubConn connector
- controller • 2 on-board LED flashers for
- calibration
- Mu-metal cage • Elastic gel

Sounder map 2017

1440

Year	2016	2017	2018	2019	2020	2021
# of Clusters planned	1	2	4	6	8	10
# of Clusters actual	1	2	3	5	7	9

- Reliable ice cover (mid February mid April) as an excellent platform for:
 - bed cable laying
 - telescope deployment and maintenance

- hit time difference on adjacent OMs

- Muon hit selection:
 - Causality criterion, 20 ns window
 - Three or more OMs in a row must be hitted
 - At least one OM of the three must have Q > 3 p.e.
- Serves as a cross check of time calibration with 5 ns precision, OM sensitivities

Cascade detection in one cluster

- Directional resolution $\approx 3^{\circ}$ 4° (median)
- Energy resolution $\delta E/E \approx 30\%$ (averaged by E^{-2} v_e spectrum)

GVD cluste E=100 TeV 0.07 0.05 0.04 0.03

of Oms 288

Timeline

576

Baikal Site Infrastructure:

- Railroad, Power line on the shore
- The new data taking center at the array site has been installed in 2016.
- The new shore lab was created on the site during summer 2017.
- The building in Baikalsk town is ready for the local lab and temporary OMs storage for detector maintenance and upgrade.

The optical modules production facility in Dubna:

- The facility allows to produce and test up to 12 OM per day
- We need to produce and send to the site 600 OM per season

2016

2592

Search for muon neutrino in 2016 (33 live days) **Muon Neutrino Selection**

Polar angle distribution of muons selected with the requirement of at least 6 hits OM's at 3 strings. Comparison of reconstructed events in obtained Data and simulated atmospheric muon flux generated with CORSIKA QGSJET

Atmospheric background suppression

After track reconstruction and cuts on quality variables have

BDT is trained on events reconstructed as upgoing with $0 < \theta < 80$ deg.

> 0.20, 80% signal efficiency

Angular distribution for BDT > 0.2 cut

- 23 events were selected in the signal region
- \approx 3 events expected bkg. from atm. muons
- ≈ 36 events expected signal from atm. neutrinos

After hit selection ($\theta = 142.0^{\circ}$)

ional (test sample Signal (training sample) (background) probability = 0.007 -0.3 -0.2 -0.1 0 0.2 0.3 0.4 0.1

BDT response

Search for high-energy neutrinos associated with the

Coordinates reconstruction & N _{hit} >9	577495	1				
χ ² < 4	2405	1/240				
Energy reconstruction						
L _a < 20	374	1/6.4				
η > 0	159	1/2.4				
E > 10 TeV	57	1/2.8				
E > 100 TeV	5	1/11.4				
Total rejection fact	1/115499					

Hits with Q > 1.5 p.e

- Selected hits for reconstruction All hit OMs (93 hits) (53 hits)
 - E=157 TeV, θ = 57°, φ = 249°, x=-25m, y=-37m, z=11m, ρ=44m

- GW: 17.08.2017, 12:41:04 UTC = 1502973664 sec UNIX
- NGS4993 at ~ 40 Mpc, equatorial coordinates α (J2000.0) = 13h $09m \ 48s.085, \beta(J2000.0) = -23^{\circ}22'53''.343$
- Zenith angle of the source at registration time: 93.3°
- No neutrino events associated with GW170817 using cascade mode within both ± 500 sec and 14 days are observed
- Assuming E-2 spectral behavior and equal fluence in all flavors the upper limits at 90% C.L. are obtained on the neutrino

- 1. A.D. Avrorin et al., "Gigaton Volume Detector (GVD) in Lake Baikal: status of the project", XVII International Workshop on Neutrino Telescope, 13-17 March 2017, Venezia, Italy, 2. A.D. Avrorin et al., "Status of the Baikal-GVD experiment – 2017", 35th ICRC-2017 12-20 July 2017, Bexco, Busan, S.Korea,
- A.D. Avrorin et al., "The optical module of Baikal-GVD", 2016. 10 pp., Published in Phys.Part.Nucl.Lett. 13 (2016) no.6, 737-746, DOI: 10.1134/S1547477116060029. 4. A.D. Avrorin et al., "Data acquisition system for the Baikal-GVD neutrino telescope", Published in Phys.Part.Nucl. 47 (2016) no.6, 933-937, DOI: 10.1134/S1063779616060058. 5. A.D. Avrorin et al., "Cascades in GVD", 35th ICRC-2017 12-20 июля 2017, Bexco, Busan, S.Korea, https://pos.sissa.it/301/962/pdf