

université Energy reconstruction in the SuperNEMO calorimeter

Axel PIN, Emmanuel CHAUVEAU, Arnaud HUBER, Christine MARQUET CENBG, Bordeaux, France On behalf of the SuperNEMO Collaboration

The SuperNEMO demonstrator

The main wall calorimeter

The SuperNEMO experiment aims to study the neutrinoless double beta decay ($\beta\beta0\nu$) and reach a sensitivity on this decay of 10²⁶ years, i.e a Majorana neutrino mass of 50-100 meV. ββ2v and ββ0v spectra BB2v decay ßß0v decav

The dem

It is composed of

- A source foil containing the ββ emitters: 7kg of ⁸²Se (Q_{BBOV} = 2.99 MeV)
- A tracker to identify the particles and recontruct their trajectory:
- 2034 Geiger cells (14970 wires) A calorimeter to measure the energy and the time of flight (TOF) of particles: 712 optical modules (OMs)

The demonstrator is currently being installed at the Laboratoire Souterrain de Modane (LSM)

The SuperNEMO main wall calorimeter: 520 Optical Modules (OMs).

Each OM is composed of [1] :

- 10 L NUVIA plastic scintillator R5912-03 mod HAMAMATSU 8 " photomultiplier tube
- Teflon and Mylar wrapping
- RTV615 optical coupling

Measured Resolution $\approx \frac{8.3\% FWHM}{\sqrt{7\pi^3}}$ [2] $\sqrt{(E)} MeV$ Other expected performances:

- Time resolution of 400 ps(σ) @ 1 MeV
- No ageing in 5 years
 Gain survey with an accuracy < 1 %
- Low background PMT
- Low backscattering
- 50 % γ tagging @ 1 MeV

Energy corrections with optical simulations

Goal: understand every effect in the calorimeter which can affect the true deposited energy and modify the measured energy [3].

Non-linear effects : Birks and Cerenkov

Depends on the energy and the type of the particle $\, \rightarrow \,$ non-linearity of light production 2 main effects: • Birks: local saturation of the scintillation light yield. Stronger at low energies and for γ-rays. Cerenkov: production of additional light for E_{electrons} > 150 keV in the SuperNEMO scintillators.

Non-uniformity effect : Geometrical

Depends on the interaction position of the particle \rightarrow non-uniformity of light collection 2 main origins

Geometry of the scintillator (Step, corners).

Improvement of the energy resolution of the SuperNEMO experiment

Goals: Demonstrate the capability to correct the non-uniformity effect of each electron energy deposit using the impact point on the calorimeter.

[3] A. Huber. PhD Thesis, Université de Bordeaux, 2017.

Neutrino 2018 - XXVIII International Conference on Neutrino Physics and Astrophysics