Event selection for the measurement of the charged current muon antineutrino single pion production cross section in the T2K near detector

Grzegorz Zarnecki on behalf of the T2K collaboration National Centre for Nuclear Research, Warsaw, Poland Grzegorz.Zarnecki@ncbj.gov.pl

Introduction

- T2K [1] is a long-baseline neutrino oscillation experiment based in Japan.
- Beam source and near detectors (*off-axis* ND280 and *on-axis* INGRID) in J-PARC, Tokai.
- Off-axis far detector is Super-Kamiokande, 295 km away.

Figure 1: Left: Location of T2K experimental sites. Right: Cut-away drawing showing sub-detectors of ND280.

- Prediction of the oscillated spectrum at the far detector is improved thanks to fitting samples of charged-current (CC) interactions at ND280. [2]
- Cross-section is measured for different pion multiplicity topologies in order to evaluate cross-section for different types of neutrino interactions.
- $\bar{\nu}_{\mu}$ CC1 π^{-} sample is enhanced in the interactions with baryon resonance.
- Tracker part of ND280: scintillator detectors (FGD) interleaved with gaseous time projection chambers.
- Studies obtained using Monte Carlo with the NEUT neutrino generator [3].

Characteristics and selection of $\bar{\nu}_{\mu}$ CC1 π^- topology

Figure 3: Kinematics of μ^+ candidate in the selected CC1 π^- sample. Colors indicate the true topology. Left: Momentum distribution. Right: $\cos(\theta)$ distribution. Monte Carlo POT: 6.7×10^{21} .

Figure 4: Events with μ^+ candidate crossing one (left bin) or two TPC chambers (right bin). Left plot: Colors indicate the true particle selected as μ^+ candidate. Right plot: Colors indicate the true topology of the event.

	selection	selection
	without presented cut	with presented cut
efficiency	0.186 ± 0.003	0.182 ± 0.003
purity	0.500 ± 0.006	0.522 ± 0.006
product	0.093 ± 0.002	0.095 ± 0.002

• Defined as a topology with one μ^+ and one π^- in the final state, with no other types of pions:

 $ar{
u}_{\mu} + \mathrm{N}
ightarrow \mu^+ + \pi^- + \mathrm{X}$

- ND280 magnetic field enables selection of π^- and μ^+ candidate.
- Selection: one track containing a segment in TPC and starting in FGD1 fiducial volume reconstructed as a μ^+ and the other track with a segment in TPC reconstructed as a π^- (Fig. 2: left).
- Also the isolated track in FGD1 with π-like energy loss dE/dx is considered to be a signature of π⁻ (Fig. 2: right).
- In both cases, no reconstructed π^+ , π^0 nor Michel electrons.

 $CC-1\pi^{-}$

Figure 2: $CC1\pi^-$ topology event in the ND280 tracker. Left: π^- candidate containing a segment in TPC. Right: with an isolated track in FGD1 interpreted as π^- .

Table 1: Comparison of the selection without and with the presented cut.

topology or type of interaction	fraction	number of events*
$\mathbf{CC0}\pi$	1.2%	7
$\mathbf{CC}1\pi^{-}$	52.2%	311
CCother	12.6%	75
BKG CC ν_{μ}	24.3%	145
BKG NC	6.1%	36
BKG other	0.3%	2
out of FV	3.4%	20

Table 2: Composition of the $CC1\pi^-$ sample obtained with preliminary selection. *Number of events scaled to the data POT: 6.3×10^{20} .

Plans

- CC1 π^- preliminary selection is 52% pure.
- Other ideas for selection improvements are under studies. Some of the considered observables are: range of π^- candidate track, vertex activity, number of tracks in FGD1.

First studies on purity improvement

- ν
 _μ beam contaminated with ν_μ!
 One of the main background topologies: CC1π⁺:
 ν_μ + N → μ⁻ + π⁺ + X.
- $\mu^+\pi^-$ (signal) and $\mu^-\pi^+$ (background) events are difficult to distinguish due to the same μ/π -like energy loss.
- Idea for the additional selection criterion: range of the μ^+ candidate.
- True μ^+ more likely to reach TPC3 chamber than π^+ (Fig. 4).
- Eventual, additional cut: removal of events with multiple positive tracks originating from the FGD1 fiducial volume and μ^+ candidate not reaching TPC3. The impact on the selection presented in Table 1.
- Selection will be optimized based on known detector systematics and evaluation of the additional uncertainty related to TPC-FGD-TPC matching.
- Analysis will incorporate control regions (sidebands) after selection is finalized.

References

[1] K. Abe *et al.* [T2K Collaboration], Nucl. Instrum. Meth. A **659** (2011) 106 doi:10.1016/j.nima.2011.06.067
[2] K. Abe *et al.* [T2K Collaboration], Phys. Rev. Lett. **118** (2017) no.15, 151801 doi:10.1103/PhysRevLett.118.151801 [arXiv:1701.00432 [hep-ex]]
[3] Y. Hayato, Acta Phys. Polon. B **40** (2009) 2477. Used version: NEUT 5.3.2