DARWIN: an excellent environment to probe neutrino physics

P. Sanchez-Lucas on behalf of the DARWIN collaboration — University of Zurich —

DARWIN (**DAR**k matter **WI**mp search with liquid xeno**N**)

With 40 tons of active target, DARWIN will be the **ultimate dark matter detector**, able to explore the entire experimentally accessible parameter space for WIMPs, until neutrinos become an irreducible background.

- \succ Low energy threshold.
- > Ultra low background level.

powerful tool to probe neutrino physics

- Cylindrical dual-phase TPC.
- 2.6 m diameter and 2.6 m height.
- 50 t total (40 t active) of LXe.
- Two arrays of photosensors.
- Low-background cryostat.
- Outer and inner shields.
- ER discrimination level of 99.98%.

DARWIN: an excellent environment to probe neutrino physics

POTENTIAL NEUTRINO CHANNELS

Solar neutrinos

Detection through elastic scattering:

 $\nu_x + e \longrightarrow \nu_x + e$

More than 2500 pp-neutrinos per year. Flux measurement with 2% statistical precision.

Test energy production mechanisms in the Sun.

 Test different neutrinos properties, such as P_{ee} and sinθ_{w.}

Neutrinoless double-beta decay

¹³⁶Xe is a good candidate to study if neutrinos are Majorana fermions via the search of the $0\nu\beta\beta$ -decay.

CNNS

The coherent neutrino-nucleus scattering will be detected for different neutrino sources.

- ~90 events/(t×y) from solar ⁸B neutrinos.
- Atmospheric neutrinos will produce ~3×10⁻³ events/(t×y).
- All flavors of supernova neutrinos will be observed as well. ~700 neutrinos for a SN of 27 M_☉.

www.darwin-observatory.org

 $[\]nu + A \longrightarrow \nu + A$