

Radiopurity strategies and low background control in the JUNO experiment

Monica Sisti¹ and Frédéric PERROT² on behalf of the JUNO collaboration ¹University and INFN of Milano-Bicocca, Milano (Italy)

² CENBG, University of Bordeaux, CNRS/IN2P3 (France)

JUNO overview

JUNO backgrounds

- ✓ Inverse Beta Decay (IBD): $V_e + p \rightarrow e^+ + n$
- Prompt signal from positron ionization and annihilation
- \sim Delayed signal from neutron capture on 1H (2.2 MeV γ)

Criteria for IBD identification:

- Prompt signal: 0.7 < Ep < 12 MeV</p>
- Delayed signal: 1.9 < Ed < 2.5 MeV</p>
- Time Coincidence < 1 ms</p>
- Distance between two vertexes < 1.5m

Number of expected events per day before and after cuts for E > 0.7 MeV

Selection	IBD efficiency	IBD	Geo- νs	Accidental	$^{9}\mathrm{Li}/^{8}\mathrm{He}$	Fast n	$(\alpha, n$
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
N7 d		T		4 4	1		

radioactivity of materials in U/Th/K

Main JUNO physics goal : to determine the neutrino mass hierarchy at 3σ sensitivity within 6 years

- Located at 53 km from nuclear power plants (26 GWth in 2020)
- Neutrino detected by Inverse Beta Decay on free protons
- \checkmark Large scintillator detector (20 ktons) to detect 10⁵ events in 6 years
- Largest PMT coverage ever built and high transparency liquid scintillator to reach 3% energy resolution at 1 MeV

Discrimination of normal or inverted mass hierarchy

→ Broad physics program: sub-percent sensitivity on solar oscillation parameters, study of neutrino supernovae, geo-neutrinos, proton decay...

and a set of the set o	000	RMS	244.0		
	500 E 210 PO		Gamma measu	rements (and	dust re
			210	'b gamma peal	c activi
= °250 KBQ/M ³ ar equilibrium	4000 4500 5000 6000		Sample	Total activity [Bq]	Deep ac
daughters	²¹⁰ Pb activity as extracted		Smooth Acrylic	0.61 ± 0.03	0.40
udugitters			Opaque Acrylic 2	0.68 ± 0.04	0.49
			Opaque Acrylic 3	0.89 ± 0.05	0.56
°Pb activity rem	aining after surfa	ce cleaning	Opaque Acrylic 4	0.38 ± 0.02	0.25

Rock activity & Radon in Water

Several rock samples measured at different depths of the JUNO site by low-background gamma spectrometry.

Rock sam ple on a Ge detector

	⁴⁰ K	²³⁸ U	²³² Th
Bq/kg	1340±50	110±10	105±10
ppm	4.9±0.2	8.9±0.8	25.9±2.5

 \rightarrow high activity of the rocks led to a larger water thickness design for an efficient γ attenuation

- Risk of Radon diffusion from rock to the water pool.
- Requirement for ²²²Rn activity in water: $A < 0.2 Bq/m^{3}$
- Several strategies adopted:
- Smm PE liner around the walls of the water pool to prevent Rn diffusion in water
- Circulation of water at ~100 t/h and removal of Radon thanks to a vacuum degaser device

Connecting nodes and other SS components

- Stainless steel (SS) will be used for several purposes in JUNO: connecting nodes to the acrylic sphere, stainless steel truss to support the 20" and 3" PMTs,... Total mass is ~500 tons --> must be radiopure enough
- Two techniques used to screen stainless steel samples: → Low background spectrometry with HPGe detector (to have access to ²²⁶Ra chain and ⁶⁰Co)
- Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for U/Th

Sample SS 304L	⁴⁰ K (ppb)	²³⁸ U (ppb)	²³² Th (ppb)	⁶⁰ Co (mBq/kg)
Sample 1 (HPGe)	<0.04	<0.07*	1.3±0.2	<0.3
Sample 2 (ICPMS)	-	<0.54	<0.12	-
Requirement	<0.2	<1	<5	<2

* derived from ²²⁶R a activity assumed in secular equilibrium with ²³⁸U

 \rightarrow some samples fulfilled the JUNO requirements for SS

20" MCP-PMTs produced by NNVT

PMT glass is usually the bottleneck of a low background experiment Huge efforts achieved to improve the radiopurity of the glass bulbs Glass samples measured every week by gamma spectrometry Samples exceeding the radiopurity requirements are rejected

Transient section and stem glass measured every month → Glass production over 12 months under control !

~ 2 NNVT PMTs measured using a high sensitivity Radon emanation facility (~400 atoms/m2/s) and α spectrometry

3" PMTs produced by HZC 20" PMTs produced by Hamamatsu

→ 25,000 3" PMTs with a total mass of glass 60 times lower compared to LPMT \rightarrow less risk

Raw material selected for a new 3" glass bulb radiopure

	⁴⁰ K (ppb)	²³⁸ U (ppb)	²³² Th (ppb)
Glass with acid- washed sand	10.0±0.7	154±27	259±13
Requirement	<40	<400	<400

→ Glass bulb requirements are fulfilled for the mass production

XVIII International Conference on Neutrino Physics and Astophysics

