

Appearance of tau neutrinos in the MINOS+ Near Detector due to the oscillations involving sterile neutrinos

Katarzyna Grzelak for the MINOS+ Collaboration

University of Warsaw

Introduction

- In the long-baseline experiments like MINOS+, standard oscillations are not expected in the detectors located close to the neutrino source.
- In the near detectors sterile neutrinos can reduce the flux of muon neutrinos and lead to the **anomalous production** of tau neutrinos.

Model with one sterile neutrino

Oscillation probabilities at short baselines in the model with one sterile neutrino

 $(U_{e1} \ U_{e2} \ U_{e3} \ U_{e4})$ $U_{\mu1} U_{\mu2} U_{\mu3} U_{\mu4}$ $\mathbf{U} =$ $U_{\tau 1} U_{\tau 2} U_{\tau 3} U_{\tau 4}$ U_{s1} U_{s2} U_{s3} U_{s4}

- Sterile neutrinos are necessary in some extentions of the Standard Model that provide neutrino mass generation mechanism.
- Most of the experimental data well described by the standard oscillation model with 3 neutrino flavours. Therefore the mixing between active and sterile states must be small: $|U_{\alpha 4}|^2 \ll 1$.

$$\begin{split} \mathrm{P}_{\nu_{\mu} \to \nu_{\tau}}(L,E) &\simeq 4 |U_{\mu4}|^2 |U_{\tau4}|^2 \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \\ &= \sin^2 2\theta_{\mu\tau} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \\ \mathrm{P}_{\nu_{\mu} \to \nu_{\mu}}(L,E) &\simeq 1 - 4 |U_{\mu4}|^2 (1 - |U_{\mu4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \\ &= 1 - \sin^2 2\theta_{\mu\mu} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right) \end{split}$$

For $\theta_{14} = 0 \sin^2 2\theta_{\mu\tau} = \sin^2 2\theta_{24} \sin^2 \theta_{34}$, $\sin^2 2\theta_{\mu\mu} = \sin^2 2\theta_{24}$

Oscillations with one sterile neutrino

Example for $\Delta m_{41}^2 = 10 \text{ eV}^2$, $\theta_{14} = 0.2$, $\theta_{24} = 0.2$, $\theta_{34} = 0.6$ and $\delta_i = 0$. Black arrows indicate L/E value corresponding to the maximum rate of events in the Near and Far MINOS+ detectors.

$au ightarrow \mu u_ au u_\mu$ selection

- High statistics of events collected in the Near Detector allows to select τ decay channel with the smallest systematics.
- \blacktriangleright Presented sensitivities are for τ decaying into muons: $au
 ightarrow \mu
 u_{ au}
 u_{\mu}$ Dominant, large background from $CC\nu_{\mu}$ interactions.

Expected numbers of selected CC $\nu_{\tau}, \tau \rightarrow \mu \nu_{\tau} \nu_{\mu}$ interactions for 3×10^{20} POT.

MINOS+ sensitivities

- Sensitivities obtained with full MINOS+ simulation and reconstruction
- Comparison of statistics-only sensitivities, sensitivities with conservative and reduced systematics.

Discussion

Sensitivities for assumed constant baseline 1 km and for the fully simulated baseline. 90% CL sensitivity contours.

In the τ appearance search longer baselines of near detectors are preferred. 90% CL sensitivity contours.

Expectations for future

 \blacktriangleright Prerequisite for τ appearance search in the near detectors: neutrino flux above τ production threshold. This condition is fulfilled by MINOS+, NOvA (small part of flux), DUNE (small part of flux). ► NOvA *L*/*E* ratio smaller than for MINOS+, better sig/bkg ratio. ► DUNE *L*/*E* ratio similar to MINOS+, better sig/bkg ratio.

Katarzyna.Grzelak@fuw.edu.pl