
XXVIII International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2018), 4-9 June 2018, Heidelberg, Germany

Neutrino flavour, spin and spin-flavour oscillations and
consistent account for a constant magnetic field

Artem Popova, Alexander Studenikina,b
aDepartment of Theoretical Physics, Moscow State University, 119992 Moscow, Russia;

bJoint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia

E-mail addresses: ar.popov@physics.msu.ru, studenik@srd.sinp.msu.ru

Introduction
Massive neutrinos have nontrivial electromagnetic properties (see [2] for a re-
view, the update can be found in [3]). And for many years since [4], it is known
that at least the magnetic moment is not zero (µi 6= 0 are magnetic moments
of the mass states of neutrino). The best terrestrial upper bounds on the level
of µν < 2.9 ÷ 2.8 × 10−11µB on neutrino magnetic moments is obtained by the
GEMMA reactor neutrino experiment [5] and recently by the Borexino collab-
oration [6] from solar neutrino fluxes. An order of magnitude more strict astro-
physical bound on the neutrino magnetic moment is provided by the observed
properties of globular cluster stars [7, 8, 9].

The neutrino magnetic moment precession in the transversal magnetic field B⊥
was first considered in [10], then spin-flavor precession in vacuum was discussed
in [11], the importance of the matter effect was emphasized in [12]. The effect
of resonant amplification of neutrino spin oscillations in B⊥ in the presence of
matter was proposed in [13, 14], the magnetic field critical strength the presence
of which makes spin oscillations significant was introduced [15], the impact of
the longitudinal magnetic field B|| was discussed in [16] and just recently in [17].
In a series of papers [18, 19, 20, 21] the solution of the solar neutrino problem
was discussed on the basis of neutrino oscillations with subdominant effect from
the neutrino transition magnetic moments conversion in the solar magnetic field
(the spin-flavour precession).

Following to the general idea first implemented in [22, 23], we further develop
a new approach to description of the relativistic neutrino flavour νLe ↔ νLµ , spin
νLe ↔ νRe and spin-flavour νLe ↔ νRµ oscillations in the presence of an arbitrary
constant magnetic field. Our approach is based on the use of the exact stationary
states in the magnetic field for classification of neutrino spin states, contrary to
the customary approach when the neutrino helicity states are used for this pur-
pose.

Within this customary approach the helicity operator is used for classification of
a neutrino spin states in a magnetic field. The helicity operator does not commute
with the neutrino evolution Hamiltonian in an arbitrary constant magnetic field
and the helicity states are not stationary in this case. This resembles situation of
the flavour neutrino oscillations in the presence of matter when the neutrino mass
states are also not stationary. In the presence of matter the neutrino flavour states
are considered as superpositions of stationary states in matter. These stationary
states are characterized by “masses” m̃i(neff) that are dependent on the matter
density neff and the effective neutrino mixing angle θ̃eff is also a function of the
matter density.

The proposed alternative approach to neutrino oscillations in a magnetic field is
based on the use of the exact solutions of the corresponding Dirac equation for a
massive neutrino wave function in the presence of a magnetic field that stipulates
the description of the neutrino spin states with the corresponding spin operator
that commutes with the neutrino dynamic Hamiltonian in the magnetic field. In
what follows, we also account for the complete set of conversions between four
neutrino states.

Massive neutrino in a magnetic field
Consider two flavour neutrinos with two chiralities accounting for mixing

νL(R)e = ν
L(R)
1 cos θ + ν

L(R)
2 sin θ, νL(R)µ = −νL(R)1 sin θ + ν

L(R)
2 cos θ,

where ν
L(R)
i are the chiral neutrino mass states, i = 1, 2. For the relativis-

tic neutrinos the chiral states approximately coincide with the helicity states
ν
L(R)
i ≈ ν

h−(h+)
i . Note that the helicity mass states νh

−(h+)
i are not stationary states

in the presence of a magnetic field. In our further evaluations we shall expand
ν
h−(h+)
i over the neutrino stationary states ν−(+)

i in the presence of a magnetic
field.

The wave function νsi (s = ±1) of a massive neutrino that propagates along
nz direction in the presence of a constant and homogeneous arbitrary orientated
magnetic field can be found as the solution of the Dirac equation

(γp−mi − µiΣB)νsi (p) = 0, (1)

where µi is the neutrino magnetic moment and the magnetic field is given by
B = (B⊥, 0, B‖). In the discussed two-neutrino case the possibility for nonzero
neutrino transition moment µij (i 6= j) is not considered and two equations for
two neutrinos states νsi are decoupled. The equation (1) can be re-written in the
equivalent form

Ĥiν
s
i = Eνsi , (2)

where the Hamiltonian is

Ĥi = miγ0 + γ0γp + µiγ0ΣB. (3)

The spin operator that commutes with the Hamiltonian (3) can be chosen in the
form [24]

Ŝi =
mi√

m2
iB

2 + p2B2
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[
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]
. (4)

For the neutrino energy spectrum one obtains

Es
i =

√
m2
i + p2 + µi2B2 + 2µis

√
m2
iB

2 + p2B2
⊥, (5)

where s = ±1 correspond to two different eigenvalues of the Hamiltonian (3) and
p = |p|. Hence, we specify the neutrino spin states as the stationary states for
the Hamiltonian in the presence of the magnetic field, contrary to the customary
approach to the description of neutrino oscillations when the helicity states are
used.

The spin operator Ŝi commutes with the Hamiltonian Ĥi, and for the neutrino
stationary states we have

Ŝi |νsi 〉 = s |νsi 〉 , s = ±1, (6)

and
〈νsi |νs

′
k 〉 = δikδss′. (7)

Following this line, the corresponding projector operators can be introduced

P̂±i =
1± Ŝi

2
. (8)

It is clear that projectors act on the stationary states as follows

〈νs′k |P̂ s
i |νsi 〉 = δikδss′. (9)

Now in order to solve the problem of the neutrino flavour νLe ↔ νLµ , spin
νLe ↔ νRe and spin-flavour νLe ↔ νRµ oscillations in the magnetic field we ex-
pand the neutrino chiral states over the neutrino stationary states

νLi (t) = c+i ν
+
i (t) + c−i ν

−
i (t), (10)

νRi (t) = d+i ν
+
i (t) + d−i ν

−
i (t), (11)

where c±i and d±i are independent on time.
The quadratic combinations of the coefficients c+(−)

i and d
+(−)
i are given by

matrix elements of the projector operators (8)

|c±i |2 = 〈νLi |P̂±i |νLi 〉 , (12)
|d±i |2 = 〈νRi |P̂±i |νRi 〉 , (13)

(d±i )∗c±i = 〈νRi |P±i |νLi 〉 . (14)

Since |c±i |2, |d±i |2 and (d±i )∗c±i are time independent, they can be determined from
the initial conditions. Now let’s take into account the fact that only chiral states
can participate in weak interaction and, consequently, in processes of neutrino
creation and detection. It means, that the spinor structure of the neutrino initial
and final states is determined by
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where L is the normalization length. Thus, for the quadratic combinations of the
coefficients we get
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|d±i |2 = 〈νR|P̂±i |νR〉 =
1

2

(
1∓

miB‖√
m2
iB

2 + p2B2
⊥

)
, (17)
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1
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2 + p2B2
⊥
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In the case B⊥ = 0 the helicity states are stationary and (d+i )∗c+i = (d−i )∗c−i =
|c−i |2 = |d+i |2 = 0, |c+i |2 = |d−i |2 = 1.

Using eqs. (10), (11) and accounting for the fact that stationary states’ prop-
agation law has the form νsi (t) = e−iE

s
i tνsi (0), we get that the evolution in time

(space) of the relativistic neutrino flavour state νLe is given by

νLe (t) =
(
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(
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(20)
where νsi ≡ νsi (0). In exactly the same way we can write out the decomposition
of the wave function of a muon neutrino. The probability of the flavour neutrino
oscillations νLe ↔ νLµ is just

PνLe→νLµ (t) =
∣∣〈νLµ |νLe (t)〉

∣∣2 .
The probability of oscillations νLe ↔ νLµ is simplified if one accounts for the

relativistic neutrino energies (p� m) and also for realistic values of the neutrino
magnetic moments and strengths of magnetic fields (p � µB). In this case we
have

Es
i ≈ p +

m2
i

2p
+
µ2iB

2

2p
+ µisB⊥. (21)

It is reasonably to suppose that µB << m, then the contribution µ2iB
2

2p can be
neglected in (21). In the considered case we also have

|csi |2|cs
′
k |2 ≈

1

4
. (22)

Finally, for the probability of flavour oscillations νLe ↔ νLµ we get

PνLe→νLµ (t) = sin2 2θ
{

cos(µ1B⊥t) cos(µ2B⊥t) sin2 ∆m2

4p
t +

+ sin2
(
µ+B⊥t) sin2(µ−B⊥t)

}
, (23)

where µ± = 1
2(µ1 ± µ2).

From the obtained expression (23) a new phenomenon in the neutrino flavour
oscillation in a magnetic field can be seen. It follows that the neutrino flavour
oscillations in general can be modified by the neutrino magnetic moment inter-
actions with the transversal magnetic field B⊥. In the case of zeroth magnetic
moment and/or vanishing magnetic field eq.(23) reduces to the well known prob-
ability of the flavour neutrino oscillations in vacuum.

In quite similar evaluations we also obtain probabilities of neutrino spin νLe ↔
νRe and spin-flavour νLe ↔ νRµ oscillations. In particular, for of neutrino spin
νLe ↔ νRe oscillations we get

PνLe→νRe =
{

sin (µ+B⊥t) cos (µ−B⊥t) + cos 2θ sin (µ−B⊥t) cos (µ+B⊥t)
}2

−

− sin2 2θ sin(µ1B⊥t) sin(µ2B⊥t) sin2 ∆m2

4p
t. (24)

For the probability of the neutrino spin-flavour oscillations νLe ↔ νRµ we get

PνLe→νRµ (t) = sin2 2θ
{

sin2 µ−B⊥t cos2 (µ+B⊥t) +

+ sin(µ1B⊥t) sin(µ2B⊥t) sin2 ∆m2

4p
t
}
. (25)

For completeness, we also calculate within our approach the neutrino survival
probability νLe ↔ νLe and get

PνLe→νLe (t) =
{

cos (µ+B⊥t) cos (µ−B⊥t)− cos 2θ sin (µ+B⊥t) sin (µ−B⊥t)
}2

−

− sin2 2θ cos(µ1B⊥t) cos(µ2B⊥t) sin2 ∆m2

4p
t. (26)

It is just straightforward that the sum of the obtained four probabilities (23), (24),
(25) and (26) is

PνLe→νLµ + PνLe→νRe + PνLe→νRµ + PνLe→νLe = 1. (27)

Figure 1: The probability of the neutrino flavour oscillations νLe → νLµ in the
transversal magnetic field B⊥ = 108 G for the neutrino energy p = 1 MeV ,
∆m2 = 7× 10−5 eV 2 and magnetic moments µ1 = µ2 = 10−12µB.

Figure 2: The probability of the neutrino spin oscillations νLe → νRe in the
transversal magnetic field B⊥ = 108 G for the neutrino energy p = 1 MeV ,
∆m2 = 7× 10−5 eV 2 and magnetic moments µ1 = µ2 = 10−12µB.

Figure 3: The probability of the neutrino spin flavour oscillations νLe → νRµ in
the transversal magnetic field B⊥ = 108 G for the neutrino energy p = 1 MeV ,
∆m2 = 7× 10−5 eV 2 and magnetic moments µ1 = µ2 = 10−12µB.

Finally, the obtained closed expressions (23), (24), (25) and (26) show that
the neutrino oscillation PνLe→νLµ (t), PνLe→νRe (t), PνLe→νRµ (t) and also survival
PνLe→νLe (t) probabilities exhibits quiet complicated interplay of the harmonic
functions that are dependent on six different frequencies. On this basis we predict
modifications of the neutrino oscillation patterns that might provide new impor-
tant phenomenological consequences in case of neutrinos propagation in extreme
astrophysical environments where magnetic fields are present.
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