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ABSTRACT
• The neutrino oscillation data indicate that the mixing angle θ23 is close to
π/4 and θ13 is very small.

• The simplest symmetry, which can explain these features, is the µ ↔ τ
exchange symmetry. This symmetry predicts θ23 = −π/4 and θ13 = 0.

• This symmetry is obviously broken since the experimental measurements
differ from these predictions.

µ↔ τ SYMMETRY: INTRODUCTION
• µ ↔ τ symmetry is about invariance under interchange of µ and τ flavors

in the mass matrix:
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• This real symmetric matrix is diagonalized by the orthogonal matrix: cos θ12 sin θ12 0
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• The predictions of the µ↔ τ symmetry by inspection are:

θ23 = −π/4 and θ13 = 0,

leaving θ12 as a free parameter like the mass-squared differences.

• The mass-squared differences are:
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where m1 = (a+ c+ d− k)/2, m2 = (a+ c+ d+ k)/2 and m3 = c− d with
k =

√
(c+ d− a)2 + 8b2 are the mass eigenvalues.

SOLVING THE µ↔ τ SYMMETRIC MASS MATRIX
• To solve the µ ↔ τ symmetric mass matrix exactly, we use the three equa-

tions (1) and (2) and take the fourth equation the smallest mass eigenvalue
to be negligibly zero. For NH, m1 ≈ 0, and for IH, m3 ≈ 0.

• By using the neutrino global data best-fit values of the three oscillation
parameters, viz., δm2 = 7.54 × 10−5eV2, ∆m2 = 2.43 × 10−3eV2 and
θ12 = 33.7◦, we obtain a set of values for the matrix elements: a =
0.003274, b = 0.002551, c = 0.02779 and d = −0.02151.

• Now we search for all allowed values of a, b, c and d by using the 3σ range
constraints

6.99× 10−5 ≤ δm2 ≤ 8.18× 10−5, 0.259 ≤ sin2 θ12 ≤ 0.359,

2.23× 10−3 ≤ ∆m2 ≤ 2.61× 10−3, |m1| < 0.1m2.

• We have the set of ranges for NH:

a = 0.0017− 0.0036, b = 0.0025− 0.0031,

c = 0.027− 0.028, d = −0.022−−0.021.

µ↔ τ SYMMETRY BREAKING
• Symmetry breaking through ’ε1’ (M12 = b− ε1 and M13 = b+ ε1) :

– sin2 θ13 ≈ ε21/(2c2) (NH) = 2ε21/a
2 (IH) (Analytical estimate)

– Here, we get acceptable values for θ13 but θ23 is close to maximality.

• Symmetry breaking through ’ε2’ (M22 = c− ε2 and M33 = c+ ε2) :

– δθ23 ' −ε2/(2d) (Analytical estimate)

– This symmetry breaking makes θ23 deviate from maximality as much
as expected but θ13 is close to zero.

COMPLETE µ↔ τ SYMMETRY BREAKING
• We need both ε1 and ε2 non-zero to obtain the observed value of θ13 and

observable deviation of θ23 from −π/4.

• Numerical results for the complete symmetry breaking:

Matrix NH IH
Element

a 0.0027-0.0046 0.048-0.050
|b| 0.0026-0.0038 0.0-0.00027
c 0.028 0.023-0.028
d -0.022 0.0210-0.0270
|ε1| 0.0043-0.0052 0.0044-0.0058
|ε2| 0.0-0.0046 0.0-0.0026

• The value of b is always an order of magnitude smaller than those of the
other paramters in most cases. In particular, b can be zero for the case of
IH.

• In particular, ε is always larger than b by a factor 2 or more. Given the
magnitude of θ13, we can not even consider µ ↔ τ symmetry as an even
approximate symmetry.

µ↔ −τ SYMMETRY

• As b = 0 is a possible solution for the case of IH, we take this as another
constraint to study µ↔ −τ symmetry. Here, ε1 is naturally non-zero:

M2 =

 a −ε1 ε1
−ε1 c d
ε1 d c

 .

• After diagonalization, we find θ23 = −π/4, θ12 = 0 and

tan 2θ13 =
2
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.

• This, except for θ23, is exactly opposite to µ↔ τ symmetry case.

µ↔ −τ SYMMETRY BREAKING
• Now, we break the µ↔ −τ symmetry by introducing ε2:
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−ε1 c− ε2 d
ε1 d c+ ε2

 .

• Diagonalization of M5 in the 2-3 sector with θ23 = −π/4 + δθ23 leads to
tan 2δθ23 = −ε2/d.

• A further simultaneous diagonalization in the 1-3 and 1-2 sectors as

(U13U12)T (UT23M5U23)(U13U12)

yields (by demanding off-diagonal terms to be zero)
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• It is possible to fine-tune (a − c − d′) ∼ ε21/a to obtain sin2 θ12 ≈ 0.3 but
leave the values of δm2 and ∆m2 unchanged.

CONCLUSIONS
• The precision oscillation data suggest µ↔ τ symmetry must be badly bro-

ken.

• With µ ↔ −τ symmetry, charaterized by b ≡ 0, it is possible to reproduce
all the neutrino oscillation parameters with just five parameters including
a sinlge symmetry breaking term ε2.

• This procedure requires fine-tuning of the mass-matrix parameters to re-
produce the measured value of θ12.


