

Experimental study of decoherence effects in neutrino oscillations in Daya Bay

Konstantin Treskov on behalf of the Daya Bay collaboration Joint Institute for Nuclear Research, Dubna, Russia NEUTRINO 2018, Heidelberg, 3-10 June

Conventional neutrino oscillations

- Convetional approach to neutrino oscillations relies on a number of assumptions:
 - Flavor state is a superposition of mass states with identical energies:

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} V_{\alpha i}^{*} |\nu_{i}(p)\rangle$$

- Production and detection proccesses occur coherently.
- Mass states travel at speed of light.
- This leads to the extensively experimentally studied oscillation

Daya Bay setup

- 8 detectors each with 20 tons of Gd-doped liquid scintillator.
- 6 nuclear reactors each with 2.9 GW of thermal power.
- $\bar{\nu}_e$ detection through IBD $\bar{\nu}_e + p \rightarrow e^+ + n$
- Use coincidence of prompt and delayed signals in time to select $\bar{\nu}_e$ events.

probability

$$P_{\alpha\beta}(L) = \sum_{i,k=1}^{3} V_{\alpha i}^{*} V_{\beta i} V_{\beta k}^{*} V_{\alpha k} \exp\left(-2\pi i \frac{L}{L_{ik}^{\text{osc}}}\right), \quad L_{ik}^{\text{osc}} = \frac{4\pi E}{\Delta m_{ik}^{2}}$$

- There are internal inconsistencies within this approach:
 - Distance *L* can't be defined with delocalized states.
 - The coherence of production and detection should be proven.
 - Equal energy assumption is not Lorentz-invariant.

Neutrino oscillation with wave packets

• The issues above can be addressed when one considers neutrino flavor state as coherent superposition of mass states with different momenta:

$$u_i(\mathbf{k}) \rightarrow \int \frac{d\mathbf{k}}{2\pi} f(\mathbf{k}, \mathbf{p}, \sigma^2) |\nu_i(\mathbf{k})\rangle$$

• Assuming form factor is Gaussian the oscillation probability reads:

$$\mathsf{P}_{\alpha\beta}(L) = \sum_{k, j=1}^{3} \frac{V_{k\beta} V_{\alpha k}^* V_{j\alpha} V_{\beta j}^*}{\sqrt{1 + \left(L/L_{kj}^{\mathsf{d}}\right)^2}} \exp\left[-\frac{\left(L/L_{kj}^{\mathsf{coh}}\right)^2}{1 + \left(L/L_{kj}^{\mathsf{d}}\right)^2} - \mathsf{D}_{kj}^2\right] \mathrm{e}^{-i(\varphi_{kj} + \varphi_{kj}^{\mathsf{d}})}$$

• $\bar{\nu}_e$ sample based on 621 days:

EH1EH2EH3Events613813477144150255

• Energy resolution $\sim 8\,\%$ at 1 MeV.

Statistical method

Test statistic is defined as: $\chi^{2} = (\mathbf{d} - \mathbf{t}(\boldsymbol{\eta}))^{T} V^{-1} (\mathbf{d} - \mathbf{t}(\boldsymbol{\eta}))$ • Free parameters: • σ_{rel} • $\sin^{2} 2\theta_{13}$ • Δm_{32}^{2}

 Flux normalization N
 Systematical uncertainties are propagated via covariance matrix V.

- σ_{rel} = σ_p/p is the relative momentum dispersion of wave packet. σ_p is the intrinsic momentum dispersion of wave packet. It depends on the kinematics of production and detection processes. In this work σ_p = const is assumed.
 L^{coh} = L^{osc}/_{kj} is coherence length. At this distance separation of wave packets due to different group velocities suppresses interference between mass states.
- $L_{kj}^{d} = \frac{L_{kj}}{2\sqrt{2}\sigma_{rel}}$ is dispersion length of wave packet. At this distance coherence between mass states is partially restored due to spacial broadening of wave packet.

• $D_{kj}^2 = \frac{1}{2} \left(\frac{\Delta m_{kj}^2}{4p^2 \sigma_{rel}} \right)^2$ suppresses the coherence of mass states due to spacial localization of production and detection regions.

What do we know about σ_p ?

• Confidence levels are constructed via fixed-level $\Delta \chi^2$ and Feldman-Cousins methods.

Results and Discussion

- There are 3 distinct regions on σ_{rel}:
 σ_{rel} < 10⁻¹⁶ oscillations are suppressed by D².
 10⁻¹⁶ < σ_{rel} < 0.1 no impact on oscillations.
 - $\sigma_{\rm rel} > 0.1$ loss of coherence due to spacial separation $L^{\rm coh}$ and dispersion $L^{\rm d}$.
- Allowed region for $\sigma_{\rm rel}$ at 95% C.L.: $2.38 \cdot 10^{-17} < \sigma_{\rm rel} < 0.232$
- The lower limit can be improved with constraints from reactor cores and detector dimensions. Combined limits are:

- No first principle QFT calculations.
- Only phenomenological estimates such as:
- $\sigma_p \sim 1 \text{ MeV}, \ \sigma_x \sim 10^{-11} \text{ cm} \text{uranium atom size};$ • $\sigma_p \sim 1 - 10 \text{ keV}, \ \sigma_x \sim 10^{-8} - 10^{-7} \text{ cm} - \text{atomic scale};$
- $\sigma_p \sim 0.1 \,\mathrm{eV}, \ \sigma_x \sim 10^{-4} \,\mathrm{cm}$ pressure broadening.
- Lack of experimental studies.

Reference

 Study of the wave packet treatment of neutrino oscillation at Daya Bay, Eur.Phys.J. C77 (2017), 606

$$10^{-11}\,\mathrm{cm} \lesssim \sigma_x \lesssim 2\,\mathrm{m}$$

• The upper limit on $\sigma_{\rm rel}$ is $\sigma_{\rm rel} < 0.2$ at 95% C.L.

Conclusion

- First experimental limits on $\sigma_{\rm rel}$ are obtained.
- Insignificance of decoherence effect ensures unbiased measurent of oscillation parameters using the standard approach in Daya Bay.