Virtual depth by active background suppression: The cosmic muon induced background of GERDA Phase II

Christoph Wiesinger^{1,a}, Luciano Pandola², Stefan Schönert¹

¹Physik Department E15, Technische Universität München, Garching, Germany, ²INFN Laboratori Nazionali del Sud, Catania, Italy, ^ae-mail: <u>christoph.wiesinger@tum.de</u>

- non-standard background source for next generation background-free 0vββ searches
- deep underground in-situ production of radioactive isotopes by cosmic muons

"How deep is deep enough?"

- ⁷⁶Ge(n,γ)^{77(m)}Ge is critical cosmogenic component for 0vββ searches with germanium [1]
- simulation of GERDA Phase II [2] as proxy for LEGEND at LNGS [3]

"Capture of neutrons from inner cryostat volume appears prompt and at non-thermal energies"

Virtual depth by active background suppression: The cosmic muon induced background of GERDA Phase II

Christoph Wiesinger^{1,a}, Luciano Pandola², Stefan Schönert¹

¹Physik Department E15, Technische Universität München, Garching, Germany, ²INFN Laboratori Nazionali del Sud, Catania, Italy, ^ae-mail: <u>christoph.wiesinger@tum.de</u>

- distinct features in ^{77(m)}Ge production and decay enable active reduction
- large neutron multiplicities allow to tag accompanying sibling captures (e.g. ⁴¹Ar)
- sequence of coincidence cuts reduces the muon induced $^{77(m)}$ Ge background from (4.0 ± 0.4) \cdot 10⁻⁵ to (2.7 ± 0.3) \cdot 10⁻⁶ cts/(keV·kg·yr)
- suppression can be translated into effective muon flux reduction

"The virtual overburden of GERDA Phase II corresponds to about 5000 m.w.e"