## Neutrino Physics with Deep Learning on NOvA For the NOvA Collaboration

Fernanda Psihas  $\Psi$  , Micah Groh  $\Psi$ 

The study of oscillations relies on:

Flavor Identification & **Energy Reconstruction** 



NOvA's Event ID uses Convolutional Neural Networks (CNNs) trained with 2 views of the event to classify.

Training on neutrinos and antineutrinos independently yields further improvements\*



Table showing improvements in efficiency obtained for antineutrino selection for antineutrino vs neutrino trained networks.

\*Improvements in our training sample, composition and preselection does not reflect analysis conditions.



OLUTIONS

POOL ING

INCEPTION OUTPUT

FULLY CONNECTED

## Neutrino Physics with Deep Learning on NOvA

Fernanda Psihas  $\Psi$  🗛 , Micah Groh  $\Psi$ 

Identifying final states for energy reconstruction and cross sections:

## Single particle CNN classifier input

Prong Top Full

## Adding context information enhances discrimination power.



For the NOvA Collaboration

NEW: Classification, and reconstruction of clusters in the same network.



Can you beat our Neural Networks? GET LINK FROM OUR POSTER