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P = hadronic shower from data, which aren’t well simulated, and .

helps understand how the mismodelling of hadronic showers
impacts ve selection.

5 MRBrem Cross-Check:

¢ The ND selected ve are oscillated to the far detector in decomposed components to make a prediction of the ¢ A key cross-check for the ve signal induced electromagnetic
background components. The ve signal prediction is made by oscillating ND selected v, to the FD. (EM) shower PID selection efficiency in FD, is to compare
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& Sources of systematic uncertainties are measured by producing shifted ND and FD simulation samples by
either event reweighing or producing specially shifted files.
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¢ The extrapolation process is carried out using these modified simulation samples and the effect of the ) O N
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