

Solar neutrino capture cross-section for ⁷⁶Ge nuclei

Almaz Fazliakhmetov^{1,2}, Lev Inzhechik¹, Grigory Koroteev¹, Yury Lutostansky³, Victor Tikhonov³, Andrey Vyborov^{1,2}

¹Moscow Institute of Physics and Technology, Russia; ²Institute of Nuclear Research, Russian Academy of Sciences; ³National Research center "Kurchatov Institute", Russia

Introduction

In the experiments of GERDA and LEGEND studying the double beta decay of the ⁷⁶Ge isotope, the total energy of the beta-electrons is measured. The absorption of solar neutrinos by the ⁷⁶Ge nucleus as a result of successive reactions

$$v_{e \ solar} + {}^{76}_{32}Ge \rightarrow {}^{76}_{33}As ^* + e^-$$

 ${}^{76}_{22}As \rightarrow {}^{76}_{24}Se ^* + e^- + \bar{\nu_e}$ (*

Cross-section calculations

To calculate the neutrino capture cross-section both discrete and continuous (resonant) states of the ⁷⁶As nucleus were considered.

 $\sigma_{total}(E_v) = \sigma_{discrete}(E_v) + \sigma_{res}(E_v)$

 $(\sigma_{total}(E_v) = 0, if E_v \leq Q)$

$$\sigma_{discrete}\left(E_{v}\right) = \sum_{k} \frac{G_{F}^{2} \cos^{2}\theta_{c}}{\pi} p_{e} E_{e} F(Z, E_{e}) \left[B(F)_{k} + \left(\frac{g_{A}}{g_{V}}\right)^{2} B(GT)_{k}\right] \left[2\right]$$

 $G_F^2 cos^2 \theta_c$

 $_{e}E_{e}F(Z,E_{e})S_{\beta}(E)dE$

 $\min(E_{\nu}-Q; Esep)$

 $\sigma_{res}(E_{\nu}) =$

Cross-section calculations

induces background events indistinguishable from the studied beta decay. In this paper, the neutrino capture rate was calculated from the formula :

$$R = \int_0^\infty \rho_{solar}(E_\nu) \,\sigma_{total}(E_\nu) dE_\nu \qquad (**$$

The peculiarity of this work composed in taking into account the transitions to both discrete and continuous (resonant) states of the daughter nucleus (fig. 1).

Solar neutrino spectrum

 G_F – the weak coupling constant θ_c – the Cabibo angle p_e/E_e – the outgoing electron momentum / total energy $E_e = E_v - Q - E + m_e$ $p_e = \sqrt{E_e^2 - m_e^2}$ E – excitation energy of ⁷⁶As $F(Z, E_e)$ – the Fermi function [3] $\frac{g_A}{2} = 1.267$ [4] $Q = Q_{EC}(^{76}As)$ $B(F)_k$, $B(GT)_k$ – the Fermi (Gamow-Teller) response of the *k*-th excited state of ${}^{76}_{33}As$ * [5] $S_{\beta}(E)$ – nuclear beta strenght function $E_{sep} = 7.3 \text{ MeV} - \text{neutron separation energy}$

strength function describing The the probability of transition to one or another excited state takes into account the contribution of both resonances (isobaric analog and giant Gamow-Teller [6]):

$$S_{\beta}(E) = \left(\frac{g_A}{g_V}\right)^2 \cdot S_{\beta}(E)_{\text{GTR}} + S_{\beta}(E)_{\text{IA}}$$

This work was done on the assumption that at excitation energies of the ⁷⁶As nucleus above E_{sep}, neutron emission takes place with the formation of a stable nucleus of ⁷⁵As isotope (fig. 1), so such transitions to states with energies higher than E_{sep}, were not considered. Fig. 4 presents the spectrum of the ⁷⁶As nucleus excitation energy, which repeats the shape of the experimental strength function [5]. The narrow IAS peak lies above E_{sep} and therefore the IAS does not contribute to the total capture cross section. The calculation took only the tail of the GTR (Gaussian distribution), lying below the level of E_{sen} (on the graph it is marked with a dashed line). The strength function for the GTR was normalized according to the sum rule:

Fig. 5. Cross-section of neutrino capture

The dependence of the capture cross-sections on the incident solar neutrino energy is shown in the Fig. 5. The contribution of continuous states to the total cross section becomes noticeable from approximately 9 MeV.

Conclusion

The spectrum of solar neutrinos, figured in the formula (**), was taken from BS05(OP) model [1]. The greatest contribution to the capture rate is made by boron neutrinos.

$$\int_{0}^{\infty} S_{\beta}(E)_{\rm GTR} dE = 3(N-Z) = 36$$

In the present work the contribution of the Gamow-Teller resonance below the neutron separation energy was considered. It increased the estimation of the neutrino capture rate by the ⁷⁶Ge nucleus by 10% as compared with [2]. On the next stage it is proposed to estimate the contribution of the resonance states above E_{sep} requiring further development of the theory. In addition, it is planned to study the process (*) as a solar neutrino background for the GERDA and LEGEND experiment taking into account the real geometry of the detectors.

Rate of solar neutrino capture (in SNU)	рер	hep	Ν	F	0	B	total
only discrete states	1.369	0.0451	0.102	0.021	0.828	13.54	15.9

Table 1. Rate of solar neutrino.

References

- 1. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. **621**, L85 (2005)
- 2. Ejiri and S. R. Elliott Phys. Rev. C 89, 055501 "Charged current neutrino cross section for solar neutrinos, and background to *ββ*(0*v*) experiments"
- 3. M. Behrens and J. Janecke, *Elementary Particles, Nuclei and Atoms*, Landolt-Bornstein Group I: Nuclear Physics and
- Technology, Vol. 4 (Springer, Berlin, 1969)
- D. Mund et al., Phys. Rev. Lett. 110, 172502 (2013)
- J. H. Thies *et al.*, Phys. Rev. C **86**, 014304 (2012)
- 6. Yu. V. Gaponov, Yu. S. Lyutostanskii, JEPT Lett. 15, 120 (1972)

Acknowledgements

This work is supported by the Ministry of Education and Science of the Russian Federation under the contract No. 3.3008.2017/PP and the Russian Foundation for Basic Research (project no. 18-02-00670)

Contact

Andrey Vyborov MIPT, INR RAS Email: vyborov94@gmail.com Phone: +7 (968) 628-13-73