

0νββ

First result of the CANDLES III experiment searching for double beta decay of ⁴⁸Ca

Takashi Iida (U. of Tsukuba) for the CANDLES collaboration NEUTRINO2018, Heidelberg, Germany, Jun. 4-9, 2018

Double beta decay

Neutrino less double beta decay ($0\nu\beta\beta$) occurs when neutrino is Majorana particle. observation of $0\nu\beta\beta$ would proves;

<u>2νββ</u>

□ Majorana nature of neutrino Lepton number violation □ Neutrino mass and its hierarchy

CANDLES aims to perform the world's most sensitive $0\nu\beta\beta$ search by studying ⁴⁸Ca.

The CANDLES III (U.G.) detector is currently running 1,000 m underground in Kamioka observatory, Japan [1].

- 96 pure CaF₂ crystals (305kg)
- 62 photo-multipliers (13" & 20" PMTs)
- Light yield = 1,000 [p.e./MeV]
- 4π active shield[×] by liquid scintillator (LS)

- $0\nu\beta\beta$ has a peak at Q-value.
- Since $0\nu\beta\beta$ is extremely rare phenomenon, low background (BG) condition is important.

 \times Time const. = 1µs for CaF₂ / ~20ns for LS

 $>^{48}$ Ca has largest Q-value (4.27MeV) among all the $0\nu\beta\beta$ nuclei. Taking this advantage, we target **background free measurement !!**

[1] T. Iida et. al., Journal of Physics: Conference Series 718 (2016) 062026

Recent progress

Shield construction for BG reduction

When thermal neutrons are captured in rich material surrounding the detector such as rock and stainless steel tank, high energy γ rays are emitted so called (n,γ) , e.g. 7.6 / 9.0 MeV of Fe / Ni [2].

- We constructed shield against (n,γ) reaction on rock and stainless tank in 2016.
- The shield is consist of Pb blocks (7~12 cm thickness) and Si rubber sheet containing 40 wt% of B₄C.

After installation of the shield, (n,γ) BG level has been reduced by two order of magnitude as shown in the right figure.

[2] K. Nakajima, T. Iida et. al., Astroparticle Physics, Volume 100 (2018), Pages 54-60

<u>0vββ search result</u>

- $0_{\nu\beta\beta}$ search was conducted in region of interest corresponding to -1 sigma +2 sigma from Q-value.
- Crystals whose radio impurity of Th chain less than 10 μ Bq were selected.
- Other background were rejected analytically as follows.
 - 150 keV were rejected by pulse shape discrimination method (see right figures). β + γ event of ²⁰⁸TI (Q value = 5MeV) was
 - tagging parent ²¹²Bi alpha decay.
 - using waveform information.

Energy calibration

- Gamma-ray from neutron capture on nucleus (Fe / Ni / Si etc.) can be a good calibration source around ⁴⁸Ca Q-value of 4.27 MeV.
- We have developed high energy gamma ray calibration source by means of γ -ray from neutron capture reaction on various nuclei.
- Good linearity and resolution are obtained using this new calibration system in CANDLES.

	Results
Energy scale uncertainty	< 0.4% @4.27 MeV
Energy resolution	2.6% @4.27 MeV

beta decay experiment !!!

I'm trying to develop **Cal₂ scintillator** independent from CANDLES for future dark matter and $0\nu\beta\beta$ search [3].

<u>Calcium Iodide (Cal₂) scintillator</u>

Merit and Demerit of Cal2

Omega

Study for future

✓ High light yield \rightarrow 2-3 times larger than Nal(TI) ✓ Large WIMP cross section $\rightarrow \sigma_{SI} \propto A^2$ (A=127 for I) ✓ No activator or wave length shifter (e.g. Eu, TI) \rightarrow High attenuation length & Easy enlargement ? Cheap \rightarrow Cal₂ is even used for dog food!

- Cal₂ is an inorganic scintillator whose light yield is larger than NaI(TI) scintillator commonly used in this field.
- successfully developed a crack free Cal₂ scintillator crystal collaborating with IMR in Tohoku University.
- **Obtained light yield was 2.7 times larger than Nal(TI)** and 10 times larger than CaF₂!!
- Good energy resolution, **3.2%** @662keV, was achieved.
- Next, construct a proto-type detector with a few kg of **Cal**² scintillator for more detailed performance study.

8 Demerit

- High cleavable property (weak for shock)
- Strong deliquescence (weak for humidity)

Summary table of scintillator performance

	Nal(TI)	Cal ₂
Light yield	39,000 ph/MeV	107,000 ph/Me
E resolution	6.4% @662keV	3.2% @662keV
Emission WL	420 nm	410 nm
Time constant	230 ns	834 ns
Density	3.67 g/cm3	3.97 g/cm3

New collaborator is wanted !!!

[3] K. Kamada, T. lida et al., Ceramics International, Vol. 43, suppl. 1 (2017), Pages S423-S427